Skip to main content

Computational Generation of RNA Nanorings

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

A variety of designed RNA ring structures (ranging from triangles to hexagonal rings) have been reported in the scientific literature. Designing self-assembling RNA ring structures from structural motifs is, however, a nontrivial problem as there are many combinations of motifs and linking helices. Moreover, most combinations of motifs and linker helices will not lead to ring closure. A solution to this problem was recently published using a “design-by-catalog” approach where motif combinations that lead to rings are precomputed and tabulated. Here we present a web-browser based workflow for creating RNA rings using Galaxy, a web-based platform that can be used for workflow management. An example of how these RNA rings are generated and processed to create a 3D model of the ring is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dibrov SM, McLean J, Parsons J, Hermann T (2011) Self-assembling RNA square. Proc Natl Acad Sci 108:6405–6408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geary C, Rothemund PWK, Andersen ES (2014) A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345:799–804

    Article  CAS  PubMed  Google Scholar 

  4. Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L (2011) Self-assembling rNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yingling YG, Shapiro BA (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7:2328–2334

    Article  CAS  PubMed  Google Scholar 

  6. Jaeger L, Westhof E, Leontis NB (2001) TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 29:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nasalean L, Stombaugh J, Zirbel CL, Leontis NB (2009) RNA 3D structural motifs: definition, identification, annotation, and database searching. In: Walter NG, Woodson SA, Batey RT (eds) Non-protein coding RNAs. Springer, Berlin, pp 1–26

    Google Scholar 

  8. Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leontis NB, Westhof E (2014) Self-assembled RNA nanostructures. Science 345:732–733

    Article  CAS  PubMed  Google Scholar 

  10. Afonin KA, Kireeva M, Grabow WW, Kashlev M, Jaeger L, Shapiro BA (2012) Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett 12:5192–5195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47:1871–1880

    Article  CAS  PubMed  Google Scholar 

  12. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    Article  CAS  PubMed  Google Scholar 

  13. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  14. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  CAS  PubMed  Google Scholar 

  15. Ramakrishnan V (2014) The ribosome emerges from a black box. Cell 159:979–984

    Article  CAS  PubMed  Google Scholar 

  16. Khaled A, Guo S, Li F, Guo P (2005) Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett 5:1797–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bindewald E, Grunewald C, Boyle B, O’Connor M, Shapiro BA (2008) Computational strategies for the automated design of RNA nanoscale structures from building blocks using nanoTiler. J Mol Graph Model 27:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez HM, Maizel JVJ, Shapiro BA (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jossinet F, Ludwig TE, Westhof E (2010) Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26:2057–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, Jaeger L (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072

    Article  CAS  PubMed  Google Scholar 

  21. Bida J, Das R (2012) Squaring theory with practice in RNA design. Curr Opin Struct Biol 22:457–466

    Article  CAS  PubMed  Google Scholar 

  22. Afonin KA, Kasprzak W, Bindewald E, Puppala PS, Diehl AR, Hall KT, Kim TJ, Zimmermann MT, Jernigan RL, Jaeger L, Shapiro BA (2014) Computational and experimental characterization of RNA cubic nanoscaffolds. Methods 67:256–265

    Article  CAS  PubMed  Google Scholar 

  23. Bindewald E, Hayes R, Yingling YG, Kasprzak W, Shapiro BA (2008) RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res 36:D392–D397

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder KT, McPhee SA, Ouellet J, Lilley DM (2010) A structural database for k-turn motifs in RNA. RNA 16:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamura M, Hendrix DK, Klosterman PS, Schimmelman NRB, Brenner SE, Holbrook SR (2004) SCOR: structural classification of RNA, version 2.0. Nucleic Acids Res 32:D182–D184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW (2010) RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinformatics 11:1–12

    Article  Google Scholar 

  27. Petrov AI, Zirbel CL, Leontis NB (2013) Automated classification of RNA 3D motifs and the RNA 3D motif atlas. RNA. doi:10.1261/rna.039438.113

    PubMed  PubMed Central  Google Scholar 

  28. Vanegas PL, Hudson GA, Davis AR, Kelly SC, Kirkpatrick CC, Znosko BM (2011) RNA CoSSMos: characterization of secondary structure motifs—a searchable database of secondary structure motifs in RNA three-dimensional structures. Nucleic Acids Res 40:D439. doi:10.1093/nar/gkr943

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andronescu M, Bereg V, Hoos HH, Condon A (2008) RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinformatics 9:1–10

    Article  Google Scholar 

  30. Parlea L, Bindewald E, Sharan R, Bartlett N, Moriarty D, Oliver J, Afonin KA, Shapiro BA (2016) Ring catalog: a resource for designing self-assembling RNA nanostructures. Methods 103:128. doi:10.1016/j.ymeth.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  31. Lilley DM (2000) Structures of helical junctions in nucleic acids. Q Rev Biophys 33:109–159

    Article  CAS  PubMed  Google Scholar 

  32. Afgan E, Baker D, den BM v, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C et al (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, Taylor J, Nekrutenko A (2014) Dissemination of scientific software with Galaxy ToolShed. Genome Biol 15:1

    Article  Google Scholar 

  34. Bindewald E, Afonin K, Jaeger L, Shapiro BA (2011) Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS Nano 5:9542–9551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ponder JW, Richards FM (1987) An efficient newton-like method for molecular mechanics energy minimization of large molecules. J Comput Chem 8:1016–1024

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under Contract No. HHSN261200800001E. This research was supported [in part] by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sharan, R., Bindewald, E., Kasprzak, W.K., Shapiro, B.A. (2017). Computational Generation of RNA Nanorings. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics