Skip to main content

Construction and In Vivo Testing of Prokaryotic Riboregulators

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

RNAs that are transcribed and self-assemble within living cells are valuable tools for regulating and organizing cellular activities. Riboregulators, in particular, have been widely used for modulating translation and transcription in response to cognate transactivating or trigger RNAs, enabling cells to evaluate logic operations and to respond to environmental cues. Herein we detail a set of methods for the rapid construction and testing of prokaryotic riboregulators in Escherichia coli. These methods enable construction of dozens of riboregulator plasmids at the same time without the use of restriction enzymes. Furthermore, they facilitate rapid screening of devices and can be applied to a variety of other self-assembling in vivo RNA systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science (New York, NY) 333(6041):470–474

    Article  CAS  Google Scholar 

  2. Sachdeva G, Garg A, Godding D, Way JC, Silver PA (2014) In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 42(14):9493–9503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thisted T, Gerdes K (1992) Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene. J Mol Biol 223(1):41–54

    Article  CAS  PubMed  Google Scholar 

  4. Franch T, Petersen M, Wagner EG, Jacobsen JP, Gerdes K (1999) Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294(5):1115–1125

    Article  CAS  PubMed  Google Scholar 

  5. Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–847

    Article  CAS  PubMed  Google Scholar 

  6. Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci 108(21):8617–8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Callura JM, Cantor CR, Collins JJ (2012) Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci 109(15):5850–5855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mutalik VK, Qi L, Guimaraes JC, Lucks JB, Arkin AP (2012) Rationally designed families of orthogonal RNA regulators of translation. Nat Chem Biol 8(5):447–454

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi MK, Lucks JB (2013) A modular strategy for engineering orthogonal chimeric RNA transcription regulators. Nucleic Acids Res 41(15):7577–7588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25(6):1203–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  CAS  PubMed  Google Scholar 

  12. Zadeh JN, Wolfe BR, Pierce NA (2011) Nucleic acid sequence design via efficient ensemble defect optimization. J Comput Chem 32(3):439–452

    Article  CAS  PubMed  Google Scholar 

  13. Wolfe BR, Pierce NA (2015) Sequence design for a test tube of interacting nucleic acid strands. ACS Synth Biol 4(10):1086–1100

    Article  CAS  PubMed  Google Scholar 

  14. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322

    Article  CAS  PubMed  Google Scholar 

  15. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science (New York, NY) 332(6034):1196–1201

    Article  CAS  Google Scholar 

  16. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159(4):925–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rhodius VA, Segall-Shapiro TH, Sharon BD, Ghodasara A, Orlova E, Tabakh H et al (2013) Design of orthogonal genetic switches based on a crosstalk map of sigmas, anti-sigmas, and promoters. Mol Syst Biol 9702

    Google Scholar 

  18. Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P et al (2014) Paper-based synthetic gene networks. Cell 159(4):940–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW et al (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5):1255–1266

    Article  CAS  PubMed  Google Scholar 

  20. Chappell J, Takahashi MK, Lucks JB (2015) Creating small transcription activating RNAs. Nat Chem Biol 11(3):214–220

    Article  CAS  PubMed  Google Scholar 

  21. Krishnamurthy M, Hennelly SP, Dale T, Starkenburg SR, Martí-Arbona R, Fox DT et al (2015) Tunable riboregulator switches for post-transcriptional control of gene expression. ACS Synth Biol 4(12):1326–1334

    Article  CAS  PubMed  Google Scholar 

  22. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  23. Rouillard J-M, Lee W, Truan G, Gao X, Zhou X, Gulari E (2004) Gene2Oligo: oligonucleotide design for in vitro gene synthesis. Nucleic Acids Res 32(Web Server):W176–W180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by start-up funds from Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Green, A.A. (2017). Construction and In Vivo Testing of Prokaryotic Riboregulators. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics