Skip to main content

A New Method to Predict Ion Effects in RNA Folding

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

The strong interaction between metal ions in solution and highly charged RNA molecules is critical for RNA structure formation and stabilization. Metal ions binding to RNA can induce RNA structural changes that are important for RNA cellular functions. Therefore, quantitative modeling of the ion effects is essential for RNA structure prediction and RNA-based molecular design. Recently, inspired by the increasing experimental evidence that supports the importance of ion correlation and fluctuation in ion–RNA interactions, we developed a new computational model, Monte Carlo Tightly Bound Ion (MCTBI) model. The validity of the model is shown by the improved accuracy in the predictions for ion binding properties and ion-dependent free energies for RNA structures. In this chapter, using homodimeric tetraloop-receptor docking as an illustrative example, we showcase the MCTBI method for the computational prediction of the ion effects in RNA folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  CAS  PubMed  Google Scholar 

  2. Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world. Biochimie 84:774–790

    Article  Google Scholar 

  3. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  6. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137

    Article  CAS  PubMed  Google Scholar 

  7. Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281

    Article  CAS  PubMed  Google Scholar 

  8. Cate JH, Doudna JA (1996) Metal-binding sites in the major groove of a large ribozyme domain. Sturcture 15:1221–1229

    Article  Google Scholar 

  9. Misra VK, Draper DE (2001) A thermodynamic framework for Mg2+ binding to RNA. Proc Natl Acad Sci USA 98:12456–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34:221–243

    Article  CAS  PubMed  Google Scholar 

  11. Hayes RL, Noel JK, Whitford PC, Mohanty U, Sanbonmatsu KY, Onuchic JN (2014) Reduced model captures Mg2+-RNA interaction free energy of riboswitches. Biophys J 106:1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan ZJ, Chen SJ (2005) Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J Chem Phys 122:44903

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kolculi E, Lee NK, Thirumalai D, Woodson SA (2004) Folding of the Tetrahymena ribozyme by polyamines: importance of counterion valence and size. J Mol Biol 341:27–36

    Article  Google Scholar 

  14. Denesyuk NA, Thirumalai D (2015) How do metal ions direct ribozyme folding. Nat Chem 7:793–801

    Article  CAS  PubMed  Google Scholar 

  15. Stein A, Crothers DM (1976) Equilibrium binding of magnesium(II) by Escherichia coli tRNAfMet. Biochemistry 15:157–160

    Article  CAS  PubMed  Google Scholar 

  16. Stein A, Crothers DM (1976) Conformational changes of transfer RNA. The role of magnesium(II). Biochemistry 15:160–168

    Article  CAS  PubMed  Google Scholar 

  17. Sosnick TR, Pan T (2003) RNA folding: models and perspectives. Curr Opin Struct Biol 13:309–316

    Article  CAS  PubMed  Google Scholar 

  18. Woodson SA (2005) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 9:104–109

    Article  CAS  PubMed  Google Scholar 

  19. Draper DE (2008) RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys J 95:5489–5495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen SJ (2008) RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu Rev Biophys 37:197–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Auffinger P, Bielecki L, Westhof E (2003) The Mg2+ binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations. Chem Biol 10:551–561

    Article  CAS  PubMed  Google Scholar 

  22. Chen AA, Draper DE, Pappu RV (2009) Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop. J Mol Biol 390:805819

    Google Scholar 

  23. Hayes RL, Noel JK, Mohanty U, Whitford PC, Hennelly SP, Onuchic J, Sanbonmatsu KY. (2012) Magnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch. J Am Chem Soc 134:12043–C12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong F, Olsen B, Baker NA (2008) Computational methods for biomolecular electrostatics. Methods Cell Biol 84:843–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–249

    Article  CAS  PubMed  Google Scholar 

  26. Zhou HX (1994) Macromolecular electrostatic energy within the nonlinear Poisson-Boltzmann equation. J Chem Phys 100:3152–3162

    Article  CAS  Google Scholar 

  27. Misra V, Draper DE (1999) The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson-Boltzmann theory. J Mol Biol 17:1135–1147

    Article  Google Scholar 

  28. Baker NA, Sept D, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tjong H, Zhou HX (2006) The dependence of electrostatic solvation energy on dielectric constants in Poisson-Boltzmann calculations. J Chem Phys 125:206101

    Article  PubMed  Google Scholar 

  30. Tan ZJ, Chen SJ (2010) Predicting ion binding properties for RNA tertiary structures. Biophys J 99:1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bai Y, Greenfeld M, Herschlag D (2007) Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J Am Chem Soc 129:14981–14988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mak CH, Henke PS (2013) Ions and RNAs: free energies of counterion-mediated RNA fold stabilities. J Chem Theory Comput 9:621–639

    Article  CAS  PubMed  Google Scholar 

  33. Giambasu GM, Luchko T, Herschlag D, York DM, Case DA (2014) Ion counting from explicit-solvent simulations and 3D-RISM. Biophys J 106:883–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayes RL, Noel JK, Mandic A, Whitford PC, Sanbonmatsu KY, Mohanty U, Onuchic JN (2015) Generalized manning condensation model captures the RNA ion atmosphere. Phys Rev Lett 114:258105

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tan ZJ, Chen SJ (2006) Ion-mediated nucleic acid helix-helix interactions. Biophys J 91:518–536

    Google Scholar 

  36. Tan ZJ, Chen SJ (2006) Electrostatic free energy landscape for nucleic acid helix assembly. Nucleic Acids Res 34:6629–6639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan ZJ, Chen SJ (2007) RNA helix stability in mixed Na+/Mg2+ solution. Biophys J 92:3615–3632

    Google Scholar 

  38. Tan ZJ, Chen SJ (2008) Salt dependence of nucleic acid hairpin stability. Biophys J 95:738–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He Z, Chen SJ (2012) Predicting ion-nucleic acid interactions by energy landscape-guided sampling. J Chem Theory Comput 8:2095–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu Y, Chen SJ (2014) Many-body effect in ion binding to RNA. J Chem Phys 141:055101

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun LZ, Chen SJ. (2016) Monte Carlo Tightly Bound Ion model: predicting ion binding properties of RNA with ion correlations and fluctuations. J Chem Theory Comput 12:3370–3381

    Article  CAS  PubMed  Google Scholar 

  42. Jaeger L, Michel F, Westhof E (1994) Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J Mol Biol 236:1271–1276

    Article  CAS  PubMed  Google Scholar 

  43. Murphy FL, Cech TR (1994) GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol 236:49–63

    Article  CAS  PubMed  Google Scholar 

  44. Costa M, Deme E, Jacquier A, Michel F (1997) Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol 267:520–536

    Article  CAS  PubMed  Google Scholar 

  45. Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Article  CAS  PubMed  Google Scholar 

  46. Davis JH, Tonelli M, Scott LG, Jaeger L, Williamson JR, Butcher SE (2005) RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J Mol Biol 351:371–382

    Article  CAS  PubMed  Google Scholar 

  47. Jared HD, Trenton RF, Marco T, Samuel EB (2007) Role of metal ions in the tetraloop-receptor complex as analyzed by NMR. RNA 13:79–86

    Google Scholar 

  48. Chen SW, Honig B (1997) Monovalent and divalent salt effects on electrostatic free energies defined by the nonlinear Poisson-Boltzmann equation: application to DNA binding reactions. J Phys Chem B 101:9113–9118

    Article  CAS  Google Scholar 

  49. Magnus M, Boniecki MJ, Dawson W, Bujnicki JM (2016) SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res 44:W315–W319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng CY, Chou F, Das R (2015) Modeling complex RNA tertiary folds with Rosetta. Methods Enzymol 553:35–64

    Article  CAS  PubMed  Google Scholar 

  51. Krokhotin A, Dokholyan NV (2015) Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models. Methods Enzymol 553:65–89

    Article  CAS  PubMed  Google Scholar 

  52. Purzycka KJ, Popenda M, Szachniuk M, Antczak M, Lukasiak P, Blazewicz J, Adamiak RW (2015) Automated 3D RNA structure prediction using the RNAComposer method for riboswitches. Methods Enzymol 553:3–34

    Article  CAS  PubMed  Google Scholar 

  53. Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41:W471–W474

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gruber AR, Bernhart SH, Lorenz R (2015) The ViennaRNA web services. In: RNA bioinformatics. Methods in molecular biology, vol 1269. Springer, New York, pp 307–326

    Google Scholar 

  55. Bindewald E, Kluth T, Shapiro BA (2010) CyloFold: secondary structure prediction including pseudoknots. Nucleic Acids Res 38:W368–W372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu XJ, Zhao PN, Chen SJ (2014) Vfold: a web server for RNA structure and folding thermodynamics prediction. PLoS One 9:e107504

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cao S, Chen SJ (2005) Predicting RNA folding thermodynamics with a reduced chain representation model. RNA 11:1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao S, Chen SJ (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115:4216–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenbluth MN, Rosenbluth AW (1955) Monte Carlo calculation of the average extension of molecular chains. J Chem Phys 23:365–369

    Article  Google Scholar 

  60. Zhu Y, He Z, Chen SJ (2015) TBI server: a web server for predicting ion effects in RNA folding. PLos One 10:e0119705

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH grant GM063732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Jie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sun, LZ., Chen, SJ. (2017). A New Method to Predict Ion Effects in RNA Folding. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics