Skip to main content

A Simple Protocol for Loss-of-Function Analysis in Xenopus tropicalis Founders Using the CRISPR-Cas System

  • Protocol
  • First Online:
Genome Editing in Animals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1630))

Abstract

Xenopus tropicalis is a versatile model organism for studying basic biology such as developmental biology and cell biology, and for biomedical research on human diseases. Current genome editing techniques enable researchers to easily perform gene targeting in various animals. Among them, gene knockout using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) (CRISPR-Cas) system has recently become an indispensable strategy for loss-of-function analysis in vivo. Because of its ease of use, time, and cost efficiencies, CRISPR-Cas has also been applied to X. tropicalis where the gene disruption is highly efficient. In this chapter, we introduce a simple CRISPR-Cas system protocol for gene disruption in X. tropicalis. Based on our protocol, researchers can generate knock-out phenotypes within the shortest of timeframes, a week, and analyze genes of interest in founder generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmitt SM, Gull M, Brändli AW (2014) Engineering Xenopus embryos for phenotypic drug discovery screening. Adv Drug Deliv Rev 69-70:225–246

    Article  CAS  PubMed  Google Scholar 

  3. Hellsten U, Harland RM, Gilchrist MJ et al (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng Y, Clark KJ, Campbell JM et al (2014) Making designer mutants in model organisms. Development 141:4042–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ceccaldi R, Rondinelli B, D'Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64

    Article  CAS  PubMed  Google Scholar 

  6. Bae S, Kweon J, Kim HS et al (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706

    Article  CAS  PubMed  Google Scholar 

  7. Blitz IL, Biesinger J, Xie X et al (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51:827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakayama T, Fish MB, Fisher M et al (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo X, Zhang T, Hu Z et al (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141:707–714

    Article  CAS  PubMed  Google Scholar 

  10. Shigeta M, Sakane Y, Iida M et al (2016) Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders. Genes Cells 21:755–771

    Google Scholar 

  11. Wang F, Shi Z, Cui Y et al (2015) Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Google Scholar 

  13. Wlizla M, Falco R, Peshkin L et al (2016) Luteinizing hormone is an effective replacement for hCG to induce ovulation in Xenopus. Dev Biol. doi: 10.1016/j.ydbio.2016.05.028

    Google Scholar 

  14. Naito Y, Hino K, Bono H et al (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123

    Article  CAS  PubMed  Google Scholar 

  15. del Viso F, Khokha M (2012) Generating diploid embryos from Xenopus tropicalis. Methods Mol Biol 917:33–41

    Article  PubMed  Google Scholar 

  16. Kim HJ, Lee HJ, Kim H et al (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3:362–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim JM, Kim D, Kim S et al (2014) Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat Commun 5:3157

    PubMed  Google Scholar 

  19. Bhattacharya D, Marfo CA, Li D et al (2015) CRISPR/Cas9: an inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol 408:196–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ota S, Hisano Y, Muraki M et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Xu Y, Yu S et al (2014) An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4:6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang WY, Fu Y, Reyon D et al (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park J, Bae S, Kim JS (2015) Cas-designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31:4014–4016

    Article  CAS  PubMed  Google Scholar 

  27. Moreno-Mateos MA, Vejnar CE, Beaudoin JD et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12:982–988

    Google Scholar 

  28. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakayama T, Blitz IL, Fish MB et al (2014) Cas9-based genome editing in Xenopus tropicalis. Methods Enzymol 546:355–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Akihiko Kashiwagi and Keiko Kashiwagi (Hiroshima University) for technical advice on animal husbandry and to Ms. Mitsuki Shigeta and Miyuki Suzuki for experimental support. X. tropicalis (Golden strain) was provided by the Institute for Amphibian Biology (Hiroshima University) through the National Bio-Resource Project, Japan Agency for Medical Research and Development, Japan. This work was supported by the Japan Society for the promotion of Science KAKENHI Grant Number 15K06802 [Grant-in-Aid for Scientific Research (C)], The Narishige Zoological Science Award and The Naito Foundation to K.T.S. and JSPS KAKENHI Grant Number 15J05833 [Grant-in-Aid for JSPS Fellows] to Y.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ich T. Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sakane, Y., Suzuki, Ki.T., Yamamoto, T. (2017). A Simple Protocol for Loss-of-Function Analysis in Xenopus tropicalis Founders Using the CRISPR-Cas System. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 1630. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7128-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7128-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7127-5

  • Online ISBN: 978-1-4939-7128-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics