Skip to main content

Cell-Populated Collagen Lattice Models

  • Protocol
  • First Online:
Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1627))

Abstract

Investigation of cell function is often hampered by the complexity of the tissue context. This problem is circumvented by isolating cells from tissues and analyzing their behavior in culture. Most cell types are cultured as monolayers on planar, rigid Petri dishes, an environment that does not reflect the spatial, three-dimensional cellular environment in vivo. Culture in three-dimensional collagen lattices has been devised to optimize in vitro culture conditions and to provide a more physiologic “in vivo-like” environment. Collagen lattices can easily be manipulated to suit diverse cell types and to provide variable mechanical forces. Cells can be imaged in such surroundings, and gene expression as well as protein production and activity can be monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A 76(3):1274–1278. doi:10.1073/pnas.76.3.1274

  2. Eckes B, Krieg T, Nusgens BV et al (1995) In vitro reconstituted skin as a tool for biology, pharmacology and therapy: a review. Wound Repair Regen 3(3):248–257. doi:10.1046/j.1524-475X.1995.30304.x

    Article  CAS  PubMed  Google Scholar 

  3. Kurschat P, Zigrino P, Nischt R et al (1999) Tissue inhibitor of matrix metalloproteinase-2 regulates matrix metalloproteinase-2 activation by modulation of membrane-type 1 matrix metalloproteinase activity in high and low invasive melanoma cell lines. J Biol Chem 274(30):21056–21062. doi:10.1074/jbc.274.30.21056

    Article  CAS  PubMed  Google Scholar 

  4. Zigrino P, Mauch C, Fox JW et al (2005) Adam-9 expression and regulation in human skin melanoma and melanoma cell lines. Int J Cancer 116(6):853–859. doi:10.1002/ijc.21087

    Article  CAS  PubMed  Google Scholar 

  5. Grinnell F, Petroll WM (2010) Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol 26:335–361. doi:10.1146/annurev.cellbio.042308.113318

    Article  CAS  PubMed  Google Scholar 

  6. Eckes B, Dogic D, Colucci-Guyon E et al (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111(Pt 13):1897–1907

    CAS  PubMed  Google Scholar 

  7. Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124(4):401–404. doi:10.1083/jcb.124.4.401

    Article  CAS  PubMed  Google Scholar 

  8. Smola H, Thiekotter G, Fusenig NE (1993) Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J Cell Biol 122(2):417–429. doi:10.1083/jcb.122.2.417

    Article  CAS  PubMed  Google Scholar 

  9. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280. doi:10.1007/s00441-009-0834-6

    Article  CAS  PubMed  Google Scholar 

  10. Zhang ZG, Bothe I, Hirche F et al (2006) Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins: contribution of alpha2beta1 integrin. J Cell Sci 119(Pt 9):1886–1895. doi:10.1242/jcs.02921

    Article  CAS  PubMed  Google Scholar 

  11. Zweers MC, Davidson JM, Pozzi A et al (2007) Integrin alpha2beta1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J Invest Dermatol 127(2):467–478. doi:10.1038/sj.jid.5700546

    Article  CAS  PubMed  Google Scholar 

  12. Popova SN, Barczyk M, Tiger CF et al (2007) Alpha11 beta1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Mol Cell Biol 27(12):4306–4316. doi:10.1128/MCB.00041-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenfeldt H, Grinnell F (2000) Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices. J Biol Chem 275(5):3088–3092. doi:10.1074/jbc.275.5.3088

    Article  CAS  PubMed  Google Scholar 

  14. Mauch C, Hatamochi A, Scharffetter K et al (1988) Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel. Exp Cell Res 178(2):493–503. doi:10.1016/0014-4827(88)90417-X

    Article  CAS  PubMed  Google Scholar 

  15. Mauch C, Adelmann-Grill B, Hatamochi A et al (1989) Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett 250(2):301–305. doi:10.1016/0014-5793(89)80743-4

    Article  CAS  PubMed  Google Scholar 

  16. Zigrino P, Drescher C, Mauch C (2001) Collagen-induced proMMP-2 activation by MT1-MMP in human dermal fibroblasts and the possible role of alpha2beta1 integrins. Eur J Cell Biol 80(1):68–77. doi:10.1078/0171-9335-00134

    Article  CAS  PubMed  Google Scholar 

  17. Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 13(5):264–269. doi:10.1016/S0962-8924(03)00057-6

    Article  CAS  PubMed  Google Scholar 

  18. Chiquet M, Matthisson M, Koch M et al (1996) Regulation of extracellular matrix synthesis by mechanical stress. Biochem Cell Biol 74(6):737–744. doi:10.1006/excr.1998.4363

    Article  CAS  PubMed  Google Scholar 

  19. Kessler D, Dethlefsen S, Haase I et al (2001) Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem 276(39):36575–36585. doi:10.1074/jbc.M101602200

    Article  CAS  PubMed  Google Scholar 

  20. Trachslin J, Koch M, Chiquet M (1999) Rapid and reversible regulation of collagen XII expression by changes in tensile stress. Exp Cell Res 247(2):320–328. doi:10.1006/excr.1998.4363

    Article  CAS  PubMed  Google Scholar 

  21. Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363. doi:10.1038/nrm809

    Article  CAS  PubMed  Google Scholar 

  22. Murad S, Grove D, Lindberg KA et al (1981) Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci U S A 78(5):2879–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rittié L, Fisher GJ (2005) Isolation and culture of skin fibroblasts. Methods Mol Med 117:83–98. doi:10.1385/1-59259-940-0:083

    PubMed  Google Scholar 

  24. Kuroda Y, Wakao S, Kitada M et al (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (muse) cells. Nat Protoc 8(7):1391–1415. doi:10.1038/nprot.2013.076

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the members of the dermatology department in Cologne for their continued stimulating discussion; in particular we are grateful to Cornelia Mauch and Thomas Krieg for their constructive criticism and support. Work in the Eckes and Zigrino labs is supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) through SFB 829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Eckes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Eckes, B., Wang, F., Rittié, L., Scherr, G., Zigrino, P. (2017). Cell-Populated Collagen Lattice Models. In: Rittié, L. (eds) Fibrosis. Methods in Molecular Biology, vol 1627. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7113-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7113-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7112-1

  • Online ISBN: 978-1-4939-7113-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics