Skip to main content

Rapid Reverse Genetics Systems for Rhabdoviruses: From Forward to Reverse and Back Again

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1602))

Abstract

Methods to recover recombinant negative strand RNA viruses (rNSVs) from cloned cDNAs have been significantly improved in more than two decades of NSV reverse genetics . In particular, for non-segmented negative strand RNA viruses (NNSVs ) like rhabdoviruses , time-consuming generation of reverse genetics systems by stitching PCR subfragments of genomic rhabdovirus cDNAs using ligase-based conventional cloning approaches limited the number of available recombinant virus cDNA clones. As genetic variability is considered an intrinsic feature of RNA viruses, it is thus reasonable to conclude that reverse genetics approaches to investigate natural virus functions and pathogenesis require improved systems that reflect the complexity of naturally occurring wild-type viruses, and that largely exclude adaption to cell culture conditions.

In order to allow rapid cloning of wild-type NSV genome populations into reverse genetics vector plasmids, we developed a system in which cDNA copies of complete rhabdovirus populations are inserted into a plasmid bank by linear-to-linear homologous RecE/T recombination (LLHR ). Limited requirements for sequence information a priori, high cloning efficiencies, and the possibility to directly generate recombinant viruses from individual cDNA clones now offer novel opportunities to combine forward genetic dissection of natural rhabdovirus populations and downstream reverse genetics approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13(18):4195–4203

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawson ND, Stillman EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92(10):4477–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finke S, Conzelmann KK (1999) Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3′ copy-back ambisense rabies virus. J Virol 73(5):3818–3825

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Finke S, Granzow H, Hurst J, Pollin R, Mettenleiter TC (2010) Intergenotypic replacement of lyssavirus matrix proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation. J Virol 84(4):1816–1827. doi:10.1128/JVI.01665-09

    Article  CAS  PubMed  Google Scholar 

  5. Nolden T, Pfaff F, Nemitz S, Freuling CM, Hoper D, Muller T, Finke S (2016) Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof. Sci Rep 6:23887. doi:10.1038/srep23887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finke S, Conzelmann KK (2005) Recombinant rhabdoviruses: vectors for vaccine development and gene therapy. Curr Top Microbiol Immunol 292:165–200

    CAS  PubMed  Google Scholar 

  7. Vos A, Nolden T, Habla C, Finke S, Freuling C, Teifke J, Müller T (2013) Raccoons (Procyon lotor) in Germany as potential reservoir species for Lyssaviruses. Eur J Wildl Res 59(5):637–643. doi:10.1007/s10344-013-0714-y

    Article  Google Scholar 

  8. Finke S, Conzelmann KK (2005) Replication strategies of rabies virus. Virus Res 111(2):120–131. doi:10.1016/j.virusres.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K (2003) An improved method for recovering rabies virus from cloned cDNA. J Virol Methods 107(2):229–236

    Article  CAS  PubMed  Google Scholar 

  11. Orbanz J, Finke S (2010) Generation of recombinant European bat lyssavirus type 1 and inter-genotypic compatibility of lyssavirus genotype 1 and 5 antigenome promoters. Arch Virol 155(10):1631–1641. doi:10.1007/s00705-010-0743-8

    Article  CAS  PubMed  Google Scholar 

  12. Le Mercier P, Jacob Y, Tanner K, Tordo N (2002) A novel expression cassette of lyssavirus shows that the distantly related Mokola virus can rescue a defective rabies virus genome. J Virol 76(4):2024–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conzelmann KK, Cox JH, Schneider LG, Thiel HJ (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175(2):485–499

    Article  CAS  PubMed  Google Scholar 

  14. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Muyrers JP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18(12):1314–1317. doi:10.1038/82449

    Article  CAS  PubMed  Google Scholar 

  16. Muyrers JP, Zhang Y, Benes V, Testa G, Rientjes JM, Stewart AF (2004) ET recombination: DNA engineering using homologous recombination in E. coli. Methods Mol Biol 256:107–121. doi:10.1385/1-59259-753-X:107

    CAS  PubMed  Google Scholar 

  17. Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Muller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30(5):440–446. doi:10.1038/nbt.2183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by an intramural collaborative research grant at the Friedrich-Loeffler-Institut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Finke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nolden, T., Finke, S. (2017). Rapid Reverse Genetics Systems for Rhabdoviruses: From Forward to Reverse and Back Again. In: Perez, D. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 1602. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6964-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6964-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6962-3

  • Online ISBN: 978-1-4939-6964-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics