Skip to main content

Reverse Genetics Systems for Filoviruses

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1602))

Abstract

Filoviruses are among the most pathogenic viruses known to man. Reverse genetics systems, in particular full-length clone systems, allow the generation of recombinant filoviruses, which can be used to study virus biology, but also for applied uses such as screening for countermeasures. Here we describe the generation of recombinant filoviruses from cDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanchez A, Geisbert TW, Feldmann H (2013) Filoviridae: Marburg and Ebola viruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, Soropogui B, Sow MS, Keita S, De Clerck H, Tiffany A, Dominguez G, Loua M, Traore A, Kolie M, Malano ER, Heleze E, Bocquin A, Mely S, Raoul H, Caro V, Cadar D, Gabriel M, Pahlmann M, Tappe D, Schmidt-Chanasit J, Impouma B, Diallo AK, Formenty P, Van Herp M, Gunther S (2014) Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 371(15):1418–1425. doi:10.1056/NEJMoa1404505

    Article  CAS  PubMed  Google Scholar 

  3. Hoenen T, Feldmann H (2014) Ebolavirus in West Africa, and the use of experimental therapies or vaccines. BMC Biol 12(1):80. doi:10.1186/s12915-014-0080-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, Carroll MW, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Hossmann S, Kondé MK, Kone S, Kuisma E, Levine MM, Mandal S, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Watson CH, Kéïta S, Kieny MP, Røttingen JA (2015) Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 86(9996):857–866. doi:10.1016/S0140-6736(15)61117-5

    Article  Google Scholar 

  5. WHO International Clinical Trials Registry Platform (2015.) http://apps.who.int/trialsearch/AdvSearch.aspx?SearchTerm=Ebola. Accessed 16 Sept 2015

  6. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Basler CF, Wang X, Muhlberger E, Volchkov V, Paragas J, Klenk HD, Garcia-Sastre A, Palese P (2000) The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97(22):12289–12294. doi:10.1073/pnas.220398297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jasenosky LD, Neumann G, Lukashevich I, Kawaoka Y (2001) Ebola virus VP40-induced particle formation and association with the lipid bilayer. J Virol 75(11):5205–5214. doi:10.1128/JVI.75.11.5205-5214.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valmas C, Grosch MN, Schumann M, Olejnik J, Martinez O, Best SM, Krahling V, Basler CF, Muhlberger E (2010) Marburg virus evades interferon responses by a mechanism distinct from Ebola virus. PLoS Pathog 6(1):e1000721. doi:10.1371/journal.ppat.1000721

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chan SY, Speck RF, Ma MC, Goldsmith MA (2000) Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 74(10):4933–4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mehedi M, Hoenen T, Robertson S, Ricklefs S, Dolan MA, Taylor T, Falzarano D, Ebihara H, Porcella SF, Feldmann H (2013) Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure. PLoS Pathog 9(10):e1003677. doi:10.1371/journal.ppat.1003677

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hoenen T, Groseth A, Kolesnikova L, Theriault S, Ebihara H, Hartlieb B, Bamberg S, Feldmann H, Stroher U, Becker S (2006) Infection of naive target cells with virus-like particles: implications for the function of Ebola virus VP24. J Virol 80(14):7260–7264. doi:10.1128/JVI.00051-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watt A, Moukambi F, Banadyga L, Groseth A, Callison J, Herwig A, Ebihara H, Feldmann H, Hoenen T (2014) A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol 88(18):10511–10524. doi:10.1128/JVI.01272-14

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reid SP, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF (2006) Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 80(11):5156–5167. doi:10.1128/JVI.02349-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beniac DR, Melito PL, Devarennes SL, Hiebert SL, Rabb MJ, Lamboo LL, Jones SM, Booth TF (2012) The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PloS One 7(1):e29608. doi:10.1371/journal.pone.0029608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bharat TA, Noda T, Riches JD, Kraehling V, Kolesnikova L, Becker S, Kawaoka Y, Briggs JA (2012) Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc Natl Acad Sci U S A 109(11):4275–4280. doi:10.1073/pnas.1120453109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoenen T, Groseth A, de Kok-Mercado F, Kuhn JH, Wahl-Jensen V (2011) Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Res 91(2):195–208. doi:10.1016/j.antiviral.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoenen T, Feldmann H (2014) Reverse genetics systems as tools for the development of novel therapies against filoviruses. Expert Rev Anti-infect Ther 12(10):1253–1263. doi:10.1586/14787210.2014.948848

    Article  CAS  PubMed  Google Scholar 

  19. Hoenen T, Watt A, Mora A, Feldmann H (2014) Modeling the lifecycle of Ebola virus under biosafety level 2 conditions with virus-like particles containing tetracistronic minigenomes. J Vis Exp (91):52381

    Google Scholar 

  20. Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291(5510):1965–1969. doi:10.1126/science.1057269

    Article  CAS  PubMed  Google Scholar 

  21. Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76(1):406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neumann G, Ebihara H, Takada A, Noda T, Kobasa D, Jasenosky LD, Watanabe S, Kim JH, Feldmann H, Kawaoka Y (2005) Ebola virus VP40 late domains are not essential for viral replication in cell culture. J Virol 79(16):10300–10307. doi:10.1128/JVI.79.16.10300-10307.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoenen T, Volchkov V, Kolesnikova L, Mittler E, Timmins J, Ottmann M, Reynard O, Becker S, Weissenhorn W (2005) VP40 octamers are essential for Ebola virus replication. J Virol 79(3):1898–1905. doi:10.1128/JVI.79.3.1898-1905.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biedenkopf N, Hartlieb B, Hoenen T, Becker S (2013) Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J Biol Chem 288(16):11165–11174. doi:10.1074/jbc.M113.461285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinez MJ, Volchkova VA, Raoul H, Alazard-Dany N, Reynard O, Volchkov VE (2011) Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis 204(Suppl 3):S934–S940. doi:10.1093/infdis/jir320

    Article  CAS  PubMed  Google Scholar 

  26. Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G, Dolnik O, Basler CF, Becker S, Feldmann H (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86(21):11779–11788. doi:10.1128/JVI.01525-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shabman RS, Hoenen T, Groseth A, Jabado O, Binning JM, Amarasinghe GK, Feldmann H, Basler CF (2013) An upstream open reading frame modulates Ebola virus polymerase translation and virus replication. PLoS Pathog 9(1):e1003147. doi:10.1371/journal.ppat.1003147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S, Ebihara H, Feldmann H (2012) The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog 8(8):e1002847. doi:10.1371/journal.ppat.1002847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP, Ramanan P, Cardenas WB, Amarasinghe GK, Volchkov VE, Basler CF (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84(6):3004–3015. doi:10.1128/JVI.02459-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoenen T, Groseth A, Callison J, Takada A, Feldmann H (2013) A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Res 99(3):207–213. doi:10.1016/j.antiviral.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Towner JS, Paragas J, Dover JE, Gupta M, Goldsmith CS, Huggins JW, Nichol ST (2005) Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 332(1):20–27. doi:10.1016/j.virol.2004.10.048

    Article  CAS  PubMed  Google Scholar 

  32. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S, Meyerholz DK, Rennert P, Mullins RF, Brindley M, Sandersfeld LM, Quinn K, Weller M, McCray PB Jr, Chiorini J, Maury W (2011) T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci U S A 108(20):8426–8431. doi:10.1073/pnas.1019030108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsuda Y, Hoenen T, Banadyga L, Weisend C, Ricklefs SM, Porcella SF, Ebihara H (2015) An improved reverse genetics system to overcome cell-type-dependent Ebola virus genome plasticity. J Infect Dis. doi:10.1093/infdis/jiu681

    PubMed  PubMed Central  Google Scholar 

  34. Hoenen T, Groseth A, Feldmann F, Marzi A, Ebihara H, Kobinger G, Gunther S, Feldmann H (2014) Complete genome sequences of three Ebola virus isolates from the 2014 outbreak in west Africa. Genome Announc 2(6):e01331–e01314. doi:10.1128/genomeA.01331-14

    Article  PubMed  PubMed Central  Google Scholar 

  35. Volchkova VA, Dolnik O, Martinez MJ, Reynard O, Volchkov VE (2011) Genomic RNA editing and its impact on Ebola virus adaptation during serial passages in cell culture and infection of guinea pigs. J Infect Dis 204(Suppl 3):S941–S946. doi:10.1093/infdis/jir321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Allison Groseth for critical reading of the manuscript. This work was supported by the Intramural Research Program of the National Institutes of Health, NIAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hoenen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hoenen, T., Feldmann, H. (2017). Reverse Genetics Systems for Filoviruses. In: Perez, D. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 1602. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6964-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6964-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6962-3

  • Online ISBN: 978-1-4939-6964-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics