Skip to main content

Whole Cell Panning with Phage Display

  • Protocol
  • First Online:
Synthetic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1575))

Abstract

Phage display has emerged as one of the leading technologies for the selection of highly specific monoclonal antibodies, offering a number of advantages over traditional methods of antibody generation. While there are various possibilities to conduct phage display (e.g., solution panning, solid-phase panning), whole cell panning is an elegant way to present membrane embedded target antigens in their natural environment and conformation to antibody-bearing phages. Here, a whole cell panning procedure using a Fab-based antibody library including primary cell based screening for selectivity is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hewlett RT (1903) Serum therapy: bacterial therapeutics and vaccines. Churchill, London

    Google Scholar 

  2. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  PubMed  Google Scholar 

  3. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554

    Article  CAS  PubMed  Google Scholar 

  4. Wang XX, Shusta EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304(1–2):30–42. doi:10.1016/j.jim.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  5. Amstutz P, Forrer P, Zahnd C, Pluckthun A (2001) In vitro display technologies: novel developments and applications. Curr Opin Biotechnol 12(4):400–405

    Article  CAS  PubMed  Google Scholar 

  6. Fuchs P, Breitling F, Dubel S, Seehaus T, Little M (1991) Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Nat Biotechnol 9(12):1369–1372. doi:10.1038/nbt1291-1369

    Article  CAS  Google Scholar 

  7. Michelfelder S, Lee M, deLima-Hahn E, Wilmes T, Kaul F, Müller O, Kleinschmidt JA, Trepel M (2007) Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol 35(12):1766–1776. doi:10.1016/j.exphem.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  8. He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25(24):5132–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254. doi:10.1038/nbt.1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harel Inbar N, Benhar I (2012) Selection of antibodies from synthetic antibody libraries. Arch Biochem Biophys 526(2):87–98. doi:10.1016/j.abb.2011.12.028

    Article  CAS  PubMed  Google Scholar 

  11. Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57(4):486–498. doi:10.1016/j.ymeth.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  12. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314. doi:10.1038/nbt0396-309

    Article  CAS  PubMed  Google Scholar 

  13. Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, Hessling M, Daubert D, Felderer K, Kaden S, Kolln J, Enzelberger M, Urlinger S (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5(3):445–470

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376(4):1182–1200. doi:10.1016/j.jmb.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  15. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296(1):57–86. doi:10.1006/jmbi.1999.3444

    Article  CAS  PubMed  Google Scholar 

  16. van den Brulle J, Fischer M, Langmann T, Horn G, Waldmann T, Arnold S, Fuhrmann M, Schatz O, O’Connell T, O’Connell D, Auckenthaler A, Schwer H (2008) A novel solid phase technology for high-throughput gene synthesis. Biotechniques 45(3):340–343

    Article  PubMed  Google Scholar 

  17. Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V, Kunken J, Xu F, Cherezov V, Hanson MA, Stevens RC (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20(6):967–976. doi:10.1016/j.str.2012.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robertson N, Jazayeri A, Errey J, Baig A, Hurrell E, Zhukov A, Langmead CJ, Weir M, Marshall FH (2011) The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology 60(1):36–44. doi:10.1016/j.neuropharm.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  19. Burton DR, Scott JK, Silverman GJ (2001) Phage Display Cold Spring Harb Press, Cold Spring Harbor, NY, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Stark, Y., Venet, S., Schmid, A. (2017). Whole Cell Panning with Phage Display. In: Tiller, T. (eds) Synthetic Antibodies. Methods in Molecular Biology, vol 1575. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6857-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6857-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6855-8

  • Online ISBN: 978-1-4939-6857-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics