Skip to main content

Surface Engineering of Nanoparticles to Create Synthetic Antibodies

  • Protocol
  • First Online:
Synthetic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1575))

Abstract

Surface engineering of nanoparticles has recently emerged as a promising technique for synthetic molecular recognition of biological analytes. In particular, the use of synthetic heteropolymers adsorbed onto the surface of a nanoparticle can yield selective detection of a molecular target. Synthetic molecular recognition has unique advantages in leveraging the photostability, versatility, and exceptional chemical stability of nanomaterials. In particular, single-walled carbon nanotubes (SWNT) exhibit a large Stokes shift and near infrared emission for maximum biological sample transparency. Optical biosensors with high signal transduction and molecular specificity can be synthesized with amphiphilic heteropolymers grafted to SWNT, and discovered by high-throughput screening. Herein, we describe the development and the characterization of surface-engineered nanoparticles, or “synthetic antibodies,” for protein detection.

Linda Chio and Darwin Yang contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao Y, Zhu S, Yu J, Zhu X, Yin Y, Li G (2012) Protein detection based on small molecule-linked DNA. Anal Chem 84:4314–4320

    Article  CAS  PubMed  Google Scholar 

  2. Luo X, Freeman C, James T, Davis JJ (2013) Ultrasensitive label free electrical detection of insulin in neat blood serum. Anal Chem 85:4129–4134

    Article  CAS  PubMed  Google Scholar 

  3. Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronics signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    Article  CAS  PubMed  Google Scholar 

  4. Taleat Z, Cristea C, Marrazza G, Mazloum-Ardakani M, Sandulescu R (2014) Electrochemical immunoassay based on aptamer-protein interaction and functionalized polymer for cancer biomarker detection. J Electrochem Soc 717(718):119–124

    Google Scholar 

  5. Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci 108(10):3900–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sriwichai S, Baba A, Phanichphant S, Shinbo K, Kato K, Kaneko F (2010) Electrochemically controlled surface plasmon resonance immunosensor for the detection of human immunoglobulin G on poly(3-aminobenzoic acid) ultrathin films. Sens Actuators B 147:322–329

    Article  CAS  Google Scholar 

  7. Miyauchi Y, Chiashi S, Murakami Y, Hayashida Y, Maruyama S (2004) Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem Phys Lett 387(1–3):198–203

    Article  CAS  Google Scholar 

  8. Boghossian AA, Zhang J et al (2011) Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences application. Chem Sus Chem 4:848–863

    Article  CAS  Google Scholar 

  9. Zhang J, Landry MP, Barone PW, Kim JH et al (2013) Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat Nanotechnol 8:959–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giraldo JP, Landry MP et al (2015) A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 11(32):3973–3984

    Article  CAS  PubMed  Google Scholar 

  11. Giraldo JP et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  12. Kruss S, Landry MP et al (2014) Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J Am Chem Soc 136:713–724

    Article  CAS  PubMed  Google Scholar 

  13. Bisker G et al (2016) Protein targeted corona phase molecular recognition. Nat Commn 7:10241. doi:10.1038/ncomms10241

  14. Landry MP et al (2017) Single-molecule detection of protein efflux from microorganisms using fluorescent single walled carbon nanotube sensor arrays. Nat Nanotechnol. doi:10.1038/nnano.2016284

  15. Landry MP et al (2015) Comparative dynamics and sequence dependence of DNA and RNA binding to single walled carbon nanotubes. J Phys Chem C Nanomater Interfaces 119(18):10048–10058

    Google Scholar 

  16. Liu H et al (2015) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commn 2:309. doi:10.1038/ncomms1313

  17. Beyene AG et al (2016) Nanoparticle-templated molecular recognition platforms for detection of biological analytes. Curr Protoc Chem Biol 8:197–223. doi:10.1002/cpch.10

Download references

Acknowledgments

This work was supported by Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a Simons Foundation grant, and a Brain and Behavior Research foundation young investigator grant. D.Y. acknowledges an NSF Graduate Research Fellowship and L.C. acknowledges a LAM research fellowship. L.C. wrote the introduction, Subheadings 3.1 and 3.2. D.Y. wrote Subheadings 3.33.5. L.C. and D.Y. collaboratively wrote support commentary and edited the manuscript with guidance from M.L. We thank Roger Chang for insightful feedback on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markita Landry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chio, L., Yang, D., Landry, M. (2017). Surface Engineering of Nanoparticles to Create Synthetic Antibodies. In: Tiller, T. (eds) Synthetic Antibodies. Methods in Molecular Biology, vol 1575. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6857-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6857-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6855-8

  • Online ISBN: 978-1-4939-6857-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics