Skip to main content

Preparation of Membrane Models of Gram-Negative Bacteria and Their Interaction with Antimicrobial Peptides Studied by CD and NMR

  • Protocol
  • First Online:
Book cover Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

The antibiotic activity of antimicrobial peptides is generally derived via some type of disruption of the cell membrane(s). The most common models used to mimic the properties of bacterial membranes consist of mixtures of various zwitterionic and anionic phospholipids. This approach works reasonably well for Gram-positive bacteria. However, since the membranes of Gram-negative bacteria contain lipopolysaccharides, as well as zwitterionic and anionic phospholipids, a more complex model is required to simulate the outer membrane of Gram-negative bacteria. Herein we present a protocol for the preparation of models of the outer membranes of the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. This protocol can be used to prepare models of other Gram-negative bacteria provided the strain-specific lipopolysaccharides are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechinger B (2011) Insights into the mechanism of action of host defense peptides from biophysical and structural investigations. J Pept Sci 17:306–314

    Article  CAS  PubMed  Google Scholar 

  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  3. Domadia PN, Bhunia A, Ramamoorthy A, Bhattacharjya S (2010) Structure, interactions, and antimicrobial activities of MSI-594 derived mutant peptide MSI 594F5A in lipopolysaccharide micelles, role of the helical hairpin conformation in outer-membrane permeabilization. J Am Chem Soc 132:18417–18428

    Article  CAS  PubMed  Google Scholar 

  4. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  CAS  PubMed  Google Scholar 

  5. Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    Article  CAS  PubMed  Google Scholar 

  6. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochem Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  7. Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S (2010) NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelle mechanism of outer membrane permeabilization. J Biol Chem 285:3883–3895

    Article  CAS  PubMed  Google Scholar 

  8. Bhunia A, Mohanran H, Domadia PN, Torres J, Bhattacharjya S (2009) Designed b-boomerang antiendotoxic and antimicrobial peptides structures and activities in lipopolysaccharide. J Biol Chem 284:21991–22004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed  Google Scholar 

  10. Rietschhel ET, Kirikae T, Schde FU, Mamat U, Schidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, DiPadova F, Schreuer M, Brade H (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    Google Scholar 

  11. Lad MD, Biirembaut F, Clifton LA, Frazier RA, Webster JRP (2007) Antimicrobial peptide-lipid binding interactions and binding selectivity. Biophys J 92:3575–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    Article  CAS  PubMed  Google Scholar 

  13. Hancock REW (1984) Alterations in outer membrane permeability. Annu Rev Microbiol 38:237–264

    Article  CAS  PubMed  Google Scholar 

  14. Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding L, Yang L, Weiss TM, Warning AJ, Lehrer RI, Huang HW (2003) Interaction of antimicrobial peptides with lipopolysaccharides. Biochemistry 42:12251–12259

    Article  CAS  PubMed  Google Scholar 

  16. Bhattacharjya S (2010) De novo designed lipopolysaccharide binding peptides: structure based development of antiendotoxic and antimicrobial drugs. Curr Med Chem 17:3080–3093

    Article  CAS  PubMed  Google Scholar 

  17. Bringezu F, Wen S, Dante S, Hauss T, Majerowicz M, Waring A (2007) The insertion of the antimicrobial peptide dicynthaurin monomer in model membranes: thermodynamic and structural characterization. Biochemistry 46:5678–5686

    Article  CAS  PubMed  Google Scholar 

  18. Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MS, Casu M, Rinaldi AC (2010) Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Peptides 31:1459–1467

    Article  CAS  PubMed  Google Scholar 

  19. Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 17:298–305

    Article  CAS  PubMed  Google Scholar 

  20. Hammer MU, Brauser A, Olak C, Brezesinski G, Goldmann T, Gutsmann T, Andra J (2010) Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Biochem J 427:477–488

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides Gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54:3132–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Junkes C, Harvey RD, Bruce KD, Dolling R, Bagheri M, Dathe M (2011) Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and mode of action. Eur Biophys J 40:515–528

    Article  CAS  PubMed  Google Scholar 

  23. Matsuzaki K, Sugishita K-I, Miyajima K (1999) Interactions of an antimicrobial peptide, magainin 2 with lipopolysaccharide-containing liposomes as a model for outer membranes of Gram-negative bacteria. FEBS Lett 449:221–224

    Article  CAS  PubMed  Google Scholar 

  24. Russell AL, Kennedy AM, Spuches A, Venugopal D, Bhonsle JB, Hicks RP (2010) Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity. Chem Phys Lipids 163:488–497

    Article  CAS  PubMed  Google Scholar 

  25. Singh S, Kasetty G, Schmidtchen A, Malmsten M (2012) Membrane and lipopolysaccharide interactions of C-terminal peptides from S1 peptidases. Biochim Biophys Acta 18:2244–2251

    Article  Google Scholar 

  26. Wieprecht T, Apostolov O, Seelig J (2000) Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys Chem 85:187–198

    Article  CAS  PubMed  Google Scholar 

  27. Ladokhin AS, Vidal MF, White SH (2010) CD spectroscopy of peptides and proteins bound to large unilamellar vesicles. J Membr Biol 236:247–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Glattli A, Daura X, Seebach D, van Gunsteren WF (2002) Can one derive the conformational preference of a β-peptide from its CD spectrum. J Am Chem Soc 124:12972–12978

    Article  PubMed  Google Scholar 

  29. Ladokhin AS, Selsted ME, White SH (1999) CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix. Biochemistry 38:12313–12319

    Article  CAS  PubMed  Google Scholar 

  30. Wei S-T (2006) Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J Bacteriol 188:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Guemeve C, Auger M (1995) New approach to study fast and slow motions in lipid bilayers: application to dimyristoylphosphatidylcholine-cholesterol interactions. Biophys J 68:1952–1959

    Article  Google Scholar 

  32. Andra J, Koch MH, Bartels R, Brandenburg K (2004) Antimicrob Agents Chemother 48:1593–1599

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brandenburg K, Kusumoto S, Seyed U (1997) Conformational studies of synthetic lipid A analogues and partial structures by infrared spectroscopy. Biochim Biophys Acta 2:183–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickey Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hicks, R. (2017). Preparation of Membrane Models of Gram-Negative Bacteria and Their Interaction with Antimicrobial Peptides Studied by CD and NMR. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics