Skip to main content

Regulation of Neurotrophic Factors During Pathogenic Tau-Aggregation: A Detailed Protocol for Double-Labeling mRNA by In Situ Hybridization and Protein Epitopes by Immunohistochemistry

  • Protocol
  • First Online:
Book cover Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Alzheimer’s disease (AD), most tauopathies, and other neurodegenerative diseases are highly associated with impaired neurotrophin regulation and imbalanced neutrophin distribution. Tau phosphorylation occurs at different sites of the tau protein and some phospho-epitopes are associated with normal ageing (like tau phosphorylated at Ser202/Thr205 detected by the antibody clone AT8) and others are highly associated with AD (abnormally phosphorylated tau at Thr212/Ser214 detected by the antibody clone AT100). Neurotrophins are crucial for the survival and maintenance of distinct neuronal population; therefore, their supply is essential for a healthy brain. Though their importance is well known, their analysis in tissue is not trivial and needs careful consideration. Here, a detailed a protocol is presented, how to combine in situ hybridization (ISH) with immunohistochemistry (IHC) to analyze neurotrophins during tau neuropathology and the results were confirmed by immunological methods. In addition, the preparation of the riboprobes is presented step-by-step. Since there are growing evidences for the relevance of neurotrophic factor distribution in the pathogenesis of AD, this technique is one useful tool to investigate the underlying mechanisms and therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krüger L, Mandelkow EM (2015) Tau neurotoxicity and rescue in animal models of human tauopathies. Curr Opin Neurobiol 36:52–58

    Article  PubMed  Google Scholar 

  2. Schindowski K, Belarbi K, Buee L (2008) Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 7(S1):43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  CAS  PubMed  Google Scholar 

  4. Chowdary PD, Che DL, Cui B (2012) Neurotrophin signaling via long-distance axonal transport. Annu Rev Phys Chem 63:571–594

    Article  CAS  PubMed  Google Scholar 

  5. Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33:199–227

    Article  CAS  PubMed  Google Scholar 

  6. Murer MG, Boissiere F, Yan Q, Hunot S, Villares J, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience 88:1015–1032

    Article  CAS  PubMed  Google Scholar 

  7. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  8. Michalski B, Fahnestock M (2003) Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain Res Mol Brain Res 111:148–154

    Article  CAS  PubMed  Google Scholar 

  9. Garzon D, Yu G, Fahnestock M (2002) A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. J Neurochem 82:1058–1064

    Article  CAS  PubMed  Google Scholar 

  10. Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57:846–851

    Article  CAS  PubMed  Google Scholar 

  11. Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer’s disease. Brain Res 387:85–92

    Article  CAS  PubMed  Google Scholar 

  12. Scott SA, Mufson EJ, Weingartner JA, Skau KA, Crutcher KA (1995) Nerve growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in nucleus basalis. J Neurosci 15:6213–6221

    CAS  PubMed  Google Scholar 

  13. Ferrer I, Marín C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Martí E (1998) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58:729–739

    Article  Google Scholar 

  14. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145

    Article  CAS  PubMed  Google Scholar 

  15. Belrose JC, Masoudi R, Michalski B, Fahnestock M (2014) Increased pro–nerve growth factor and decreased brain-derived neurotrophic factor in non–Alzheimer’s disease tauopathies. Neurobiol Aging 35:926–933

    Article  CAS  PubMed  Google Scholar 

  16. Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hideo H, Keiko T, Nobuyuki Y, Tsuyoshi M (2009) Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp 33:pii:1543

    Google Scholar 

  18. Keays KM, Owens GP, Ritchie AM, Gilden DH, Burgoon MP (2005) Laser capture microdissection and single-cell RT-PCR without RNA purification. J Immunol Methods 302:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wetmore C, Ernfors P, Persson H, Olson L (1990) Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp Neurol 109:141–152

    Article  CAS  PubMed  Google Scholar 

  20. Ernsberger U, Patzke H, Rohrer H (1997) The developmental expression of choline acetyltransferase (ChAT) and the neuropeptide VIP in chick sympathetic neurons: evidence for different regulatory events in cholinergic differentiation. Mech Dev 68:115–126

    Article  CAS  PubMed  Google Scholar 

  21. Webster MJ, Herman MM, Kleinman JE, Weickert CS (2006) BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns 6:941–951

    Article  CAS  PubMed  Google Scholar 

  22. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    CAS  PubMed  Google Scholar 

  23. Micheli MR, Bova R, Laurenzi MA, Bazzucchi M, Zucconi GG (2006) Modulation of BDNF and TrkB expression in rat hippocampus in response to acute neurotoxicity by diethyldithiocarbamate. Neurosci Lett 410:66–70

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF (2008) TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    CAS  PubMed  Google Scholar 

  26. Schindowski K (2011) Decreased axonal transport during Alzheimer’s-like spatial-temporal tau pathology leads to imbalance of NGF, cholinergic dysfunction, and decreased regulation of BDNF and TrkB. Alzheimers Dement 7:S560–S561

    Google Scholar 

  27. Elliott E, Atlas R, Lange A, Ginzburg I (2005) Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3 Kinase signalling mechanism. Eur J Neurosci 22:1081–1089

    Article  PubMed  Google Scholar 

  28. Hellweg R, Lohmann P, Huber R, Kuhl A, Riepe MW (2006) Spatial navigation in complex and radial mazes in APP23 animals and neurotrophin signaling as a biological marker of early impairment. Learn Mem 13:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burbach GJ, Hellweg R, Haas CA, Del Turco D, Deicke U, Abramowski D, Jucker M, Staufenbiel M, Deller T (2004) Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J Neurosci 24:2421–2430

    Article  CAS  PubMed  Google Scholar 

  30. Schindowski K, Belarbi K, Bretteville A, Ando K, Buée L (2008) Neurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation. Genes Brain Behav 7(S1):92–100

    Article  CAS  PubMed  Google Scholar 

  31. Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC (2009) Amyloid β-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68:857–869

    Article  CAS  PubMed  Google Scholar 

  32. Saez ET, Pehar M, Vargas MR, Barbeito L, Maccioni RB (2006) Production of nerve growth factor by beta-amyloid-stimulated astrocytes induces p75(NTR)-dependent tau hyperphosphorylation in cultured hippocampal neurons. J Neurosci Res 84:1098–1106

    Article  CAS  PubMed  Google Scholar 

  33. Tatebayashi Y, Haque N, Tung YC, Iqbal K, Grundke-Iqbal I (2004) Role of tau phosphorylation by glycogen synthase kinase-3beta in the regulation of organelle transport. J Cell Sci 117:1653–1663

    Article  CAS  PubMed  Google Scholar 

  34. Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63:641–649

    Article  CAS  PubMed  Google Scholar 

  35. Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220

    Article  CAS  PubMed  Google Scholar 

  36. Capsoni S, Giannotta S, Cattaneo A (2002) Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 21:15–28

    Article  CAS  PubMed  Google Scholar 

  37. Houeland G, Romani A, Marchetti C, Amato G, Capsoni S, Cattaneo A, Marie H (2010) Transgenic mice with chronic NGF deprivation and Alzheimer’s disease-like pathology display hippocampal region-specific impairments in short-and long-term plasticities. J Neurosci 30:13089–13094

    Article  CAS  PubMed  Google Scholar 

  38. Capsoni S, Brandi R, Arisi I, D'Onofrio M, Cattaneo A (2011) A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS Neurol Disord Drug Targets 10:635–647

    Article  CAS  PubMed  Google Scholar 

  39. Cooper JD, Salehi A, Delcroix JD, Howe CL, Belichenko PV, Chua-Couzens J, Kilbridge JF, Carlson EJ, Epstein CJ, Mobley WC (2001) Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci U S A 98:10439–10444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seo H, Isacson O (2005) Abnormal APP, cholinergic and cognitive function in Ts65Dn Down’s model mice. Exp Neurol 193:469–480

    Article  CAS  PubMed  Google Scholar 

  41. Hunter CL, Isacson O, Nelson M, Bimonte-Nelson H, Seo H, Lin L, Ford K, Kindy MS, Granholm AC (2003) Regional alterations in amyloid precursor protein and nerve growth factor across age in a mouse model of Down’s syndrome. Neurosci Res 45:437–445

    Article  CAS  PubMed  Google Scholar 

  42. Hunter CL, Bimonte-Nelson HA, Nelson M, Eckman CB, Granholm AC (2004) Behavioral and neurobiological markers of Alzheimer’s disease in Ts65Dn mice: effects of estrogen. Neurobiol Aging 25:873–884

    Article  CAS  PubMed  Google Scholar 

  43. Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, Xia W, Villar A, Campbell WA, Kulnane LS, Nixon RA, Lamb BT, Epstein CJ, Stokin GB, Goldstein LS, Mobley WC (2006) Increased APP expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42

    Article  CAS  PubMed  Google Scholar 

  44. Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  45. Tuszynski MH, Yang JH, Barba D, U HS, Bakay RA, Pay MM, Masliah E, Conner JM, Kobalka P, Roy S, Nagahara AH (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72:1139–1147

    Article  PubMed  PubMed Central  Google Scholar 

  46. Malkki H (2015) NGF gene therapy activates neurons in the AD patient brain. Nat Rev Neurol 11:548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed at Sanofi-Aventis, Vitry-sur-Seine/France, supported from a Marie Curie Fellowship from the European Community in collaboration with Dr. Thomas Rooney, Sanofi Sarl, Vitry-sur-Seine/France and Dr. Luc Buée, Inserm, Lille/France. A special thanks goes to Uwe Ernsberger for transfer of the ISH technique and to Klaus Unsicker for transfer of skills on neuroanatomy and on the importance of neuroanatomy for neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Schindowski-Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schindowski-Zimmermann, K. (2017). Regulation of Neurotrophic Factors During Pathogenic Tau-Aggregation: A Detailed Protocol for Double-Labeling mRNA by In Situ Hybridization and Protein Epitopes by Immunohistochemistry. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics