Skip to main content

FRET and Flow Cytometry Assays to Measure Proteopathic Seeding Activity in Biological Samples

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Transcellular propagation of protein aggregates—or seeds—is increasingly implicated as a mechanism for disease progression in many neurodegenerative disorders, including Alzheimer’s disease and the related tauopathies. While neuropathology generally originates in one discrete brain region, pathology progresses as disease severity advances, often along discrete neural networks. The stereotypical spread of tau pathology suggests that cell-to-cell transfer of toxic protein aggregates could underlie disease progression, and recent studies implicate seeding as a proximal marker of disease, as compared to standard histological and biochemical analyses. Commonly used metrics for protein aggregation detection, however, lack sensitivity, are not quantitative, and/or undergo subjective classification. Here, we describe a FRET and flow cytometry cell-based assay that allows for rapid and quantitative detection of protein aggregates from human and rodent biological specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguzzi A, Lakkaraju AK (2016) Cell biology of prions and prionoids: a status report. Trends Cell Biol 26(1):40–51. doi:10.1016/j.tcb.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Goedert M, Falcon B, Clavaguera F, Tolnay M (2014) Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr Neurol Neurosci Rep 14(11):495. doi:10.1007/s11910-014-0495-z

    Article  PubMed  Google Scholar 

  3. Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33(7):317–325. doi:10.1016/j.tins.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Holmes BB, Diamond MI (2012) Cellular mechanisms of protein aggregate propagation. Curr Opin Neurol 25(6):721–726. doi:10.1097/WCO.0b013e32835a3ee0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. doi:10.1038/nm1066

    Article  PubMed  Google Scholar 

  6. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. doi:10.1146/annurev.neuro.24.1.112124/1/1121

    Article  CAS  PubMed  Google Scholar 

  8. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639

    Article  CAS  PubMed  Google Scholar 

  9. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60(9):1495–1500

    Article  CAS  PubMed  Google Scholar 

  10. Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM, Diamond MI (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci U S A 111:E4376–E4385. doi:10.1073/pnas.1411649111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santa-Maria I, Perez M, Hernandez F, Avila J, Moreno FJ (2006) Characteristics of the binding of thioflavin S to tau paired helical filaments. J Alzheimers Dis 9(3):279–285

    CAS  PubMed  Google Scholar 

  12. Meyer V, Dinkel PD, Rickman HE, Margittai M (2014) Amplification of tau fibrils from minute quantities of seeds. Biochemistry 53(36):5804–5809. doi:10.1021/bi501050g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Banning C, Votteler J, Hoffmann D, Koppensteiner H, Warmer M, Reimer R, Kirchhoff F, Schubert U, Hauber J, Schindler M (2010) A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One 5(2), e9344. doi:10.1371/journal.pone.0009344

    Article  PubMed  PubMed Central  Google Scholar 

  14. Furman JL, Holmes BB, Diamond MI (2015) Sensitive detection of proteopathic seeding activity with FRET flow cytometry. J Vis Exp 106:e53205. doi:10.3791/53205

    Google Scholar 

  15. Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi DP, Kotzbauer PT, Miller TM, Papy-Garcia D, Diamond MI (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A 110(33):E3138–E3147. doi:10.1073/pnas.13014401101301440110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mirbaha H, Holmes BB, Sanders DW, Bieschke J, Diamond MI (2015) Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J Biol Chem 290(24):14893–14903. doi:10.1074/jbc.M115.652693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Brandon B. Holmes for his experimental insight and contributions to the assay development. This work was supported by the Tau Consortium (M.I.D.); National Institutes of Health 1R01NS071835 (M.I.D.) and 1F32NS087805 (J.L.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Furman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Furman, J.L., Diamond, M.I. (2017). FRET and Flow Cytometry Assays to Measure Proteopathic Seeding Activity in Biological Samples. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics