Skip to main content

A Simple Method to Avoid Nonspecific Signal When Using Monoclonal Anti-Tau Antibodies in Western Blotting of Mouse Brain Proteins

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

In Alzheimer’s disease and other tauopathies, tau displays several abnormal post-translation modifications such as hyperphosphorylation, truncation, conformation, and oligomerization. Mouse monoclonal antibodies have been raised against such tau modifications for research, diagnostic, and therapeutic purposes. However, many of these primary antibodies are at risk of giving nonspecific signals in common Western blotting procedures. Not because they are unspecific, but because the secondary antibodies used to detect them will also detect the heavy chain of endogenous mouse immunoglobulins (Igs), and give a nonspecific signal at the same molecular weight than tau protein (around 50 kDa). Here, we propose the use of anti-light chain secondary antibodies as a simple and efficient technique to prevent nonspecific Igs signals at around 50 kDa. We demonstrate the efficacy of this method by removing artifactual signals when using monoclonal antibodies directed at tau phosphorylation (AT100, 12E8, AT270), tau truncation (TauC3), tau oligomerization (TOMA), or tau abnormal conformation (Alz50), in wild-type, 3×Tg-AD, and tau knockout mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344. doi:10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  3. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  4. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91:5562–5566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672. doi:10.1038/nrn2194

    Article  CAS  PubMed  Google Scholar 

  7. Bretteville A, Planel E (2008) Tau aggregates: toxic, inert, or protective species? J Alzheimers Dis 14:431–436

    PubMed  Google Scholar 

  8. Duff K, Planel E (2005) Untangling memory deficits. Nat Med 11:826–827. doi:10.1038/nm0805-826

    Article  CAS  PubMed  Google Scholar 

  9. St-Amour I, Paré I, Alata W, Coulombe K, Ringuette-Goulet C, Drouin-Ouellet J, Vandal M, Soulet D, Bazin R, Calon F (2013) Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood-brain barrier. J Cereb Blood Flow Metab 33:1983–1992. doi:10.1038/jcbfm.2013.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petry FR, Pelletier J, Bretteville A, Morin F, Calon F, Hébert SS, Whittington RA, Planel E (2014) Specificity of anti-tau antibodies when analyzing mice models of Alzheimer’s disease: problems and solutions. PLoS One 9, e94251. doi:10.1371/journal.pone.0094251

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E, Vandermeeren M, Cras P (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J 301(Pt 3):871–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114:1179–1187

    CAS  PubMed  Google Scholar 

  13. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  CAS  PubMed  Google Scholar 

  14. Planel E, Richter KEG, Nolan CE, Finley JE, Liu L, Wen Y, Krishnamurthy P, Herman M, Wang L, Schachter JB, Nelson RB, Lau L-F, Duff KE (2007) Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci 27:3090–3097. doi:10.1523/JNEUROSCI.4854-06.2007

    Article  CAS  PubMed  Google Scholar 

  15. Barghorn S, Biernat J, Mandelkow E (2005) Purification of recombinant tau protein and preparation of Alzheimer-paired helical filaments in vitro. Methods Mol Biol 299:35–51

    CAS  PubMed  Google Scholar 

  16. DeTure MA, Di Noto L, Purich DL (2002) In vitro assembly of Alzheimer-like filaments. How a small cluster of charged residues in Tau and MAP2 controls filament morphology. J Biol Chem 277:34755–34759. doi:10.1074/jbc.M201201200

    Article  CAS  PubMed  Google Scholar 

  17. Seubert P, Mawal-Dewan M, Barbour R, Jakes R, Goedert M, Johnson GV, Litersky JM, Schenk D, Lieberburg I, Trojanowski JQ (1995) Detection of phosphorylated Ser262 in fetal tau, adult tau, and paired helical filament tau. J Biol Chem 270:18917–18922

    Article  CAS  PubMed  Google Scholar 

  18. Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271:32789–32795

    Article  CAS  PubMed  Google Scholar 

  19. Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett ADT, Dineley KT, Jackson GR, Kayed R (2014) Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34:4260–4272. doi:10.1523/JNEUROSCI.3192-13.2014

    Article  PubMed  Google Scholar 

  20. Ksiezak-Reding H, Davies P, Yen SH (1988) Alz 50, a monoclonal antibody to Alzheimer’s disease antigen, cross-reacts with tau proteins from bovine and normal human brain. J Biol Chem 263:7943–7947

    CAS  PubMed  Google Scholar 

  21. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A 100:10032–10037. doi:10.1073/pnas.1630428100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mailliot C, Bussière T, Caillet-Boudin ML, Delacourte A, Buée L (1998) Alzheimer-specific epitope of AT100 in transfected cell lines with tau: toward an efficient cell model of tau abnormal phosphorylation. Neurosci Lett 255:13–16

    Article  CAS  PubMed  Google Scholar 

  23. Shuai H, Zhang J, Zhang J, Xie J, Zhang M, Ma J, Zhang L, Wang X (2012) Role of stereotaxically injected IgG from db/db mice in the phosphorylation of the microtubule-associated protein tau in hippocampus. Brain Res 1486:14–26. doi:10.1016/j.brainres.2012.08.049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Peter Davies (Albert Einstein College of Medecine, Bronx, NY, USA) for the gift of the Alz50 antibody , Dr. Rakez Kayed (Mitchell Center for Neurodegenerative Diseases, Texas, USA) for the TOMA antibody, and Dr. Peter Seubert (Neotope Biosciences, CA, USA) for the gift of the 12E8 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Planel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Petry, F.R., Nicholls, S.B., Hébert, S.S., Planel, E. (2017). A Simple Method to Avoid Nonspecific Signal When Using Monoclonal Anti-Tau Antibodies in Western Blotting of Mouse Brain Proteins. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics