Skip to main content
Book cover

Tau Protein pp 179–213Cite as

The Study of Posttranslational Modifications of Tau Protein by Nuclear Magnetic Resonance Spectroscopy: Phosphorylation of Tau Protein by ERK2 Recombinant Kinase and Rat Brain Extract, and Acetylation by Recombinant Creb-Binding Protein

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy can be used as an analytical tool to investigate posttranslational modifications of protein. NMR is a valuable tool to map the interaction regions of protein partners. Here, we present protocols that have been developed in the course of our studies of the neuronal Tau protein. Tau is found aggregated in the neurons of Alzheimer’s disease patients. Development of the disease is accompanied by increased, abnormal phosphorylation and acetylation of Tau. We have used NMR to investigate how these posttranslational modifications of Tau affect the interactions with its partners. We present here detailed protocols of in vitro phosphorylation of Tau by recombinant kinase, ERK2, or kinase activity of rat brain extracts, and acetylation by recombinant Creb-binding protein (CBP) acetyltransferase. The analytical characterization of the modified Tau by NMR spectroscopy is additionally described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12:289–309. doi:10.1016/j.arr.2012.06.003, S1568-1637(12)00088-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. J Biol Chem 267:17047–17054

    CAS  PubMed  Google Scholar 

  3. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y (1995) Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 270:823–829

    Article  CAS  PubMed  Google Scholar 

  4. Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL, Mucke L (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18:1183–1189

    Article  CAS  PubMed  Google Scholar 

  5. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    Article  PubMed  PubMed Central  Google Scholar 

  6. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966. doi:10.1016/j.neuron.2010.08.044, S0896-6273(10)00687-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qi H, Cantrelle F-X, Benhelli-Mokrani H, Smet-Nocca C, Buée L, Lippens G, Bonnefoy E, Galas M-C, Landrieu I (2015) Nuclear magnetic resonance spectroscopy characterization of interaction of Tau with DNA and its regulation by phosphorylation. Biochemistry (Mosc) 54:1525–1533. doi:10.1021/bi5014613

    Article  CAS  Google Scholar 

  8. Landrieu I, Lacosse L, Leroy A, Wieruszeski JM, Trivelli X, Sillen A, Sibille N, Schwalbe H, Saxena K, Langer T, Lippens G (2006) NMR analysis of a Tau phosphorylation pattern. J Am Chem Soc 128:3575–3583. doi:10.1021/ja054656+

    Article  CAS  PubMed  Google Scholar 

  9. Amniai L, Barbier P, Sillen A, Wieruszeski J-M, Peyrot V, Lippens G, Landrieu I (2009) Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J 23:1146–1152

    Article  CAS  PubMed  Google Scholar 

  10. Smet-Nocca C, Wieruszeski JM, Melnyk O, Benecke A (2010) NMR-based detection of acetylation sites in peptides. J Pept Sci 16:414–423. doi:10.1002/psc.1257

    CAS  PubMed  Google Scholar 

  11. Theillet F-X, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon M-K, Kriwacki RW, Landrieu I, Lippens G, Selenko P (2012) Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR 54:217–236. doi:10.1007/s10858-012-9674-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamah A, Huvent I, Cantrelle FX, Qi H, Lippens G, Landrieu I, Smet-Nocca C (2014) Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein. Biochemistry (Mosc) 53:3020–3032. doi:10.1021/bi500006v

    Article  CAS  Google Scholar 

  13. Biernat J, Mandelkow EM, Schroter C, Lichtenberg-Kraag B, Steiner B, Berling B, Meyer H, Mercken M, Vandermeeren A, Goedert M et al (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J 11:1593–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goedert M, Jakes R, Crowther RA, Six J, Lubke U, Vandermeeren M, Cras P, Trojanowski JQ, Lee VM (1993) The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci U S A 90:5066–5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91:5562–5566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249:64–67

    Article  CAS  PubMed  Google Scholar 

  17. Anderson NG, Maller JL, Tonks NK, Sturgill TW (1990) Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343:651–653. doi:10.1038/343651a0

    Article  CAS  PubMed  Google Scholar 

  18. Seger R, Ahn NG, Boulton TG, Yancopoulos GD, Panayotatos N, Radziejewska E, Ericsson L, Bratlien RL, Cobb MH, Krebs EG (1991) Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. Proc Natl Acad Sci U S A 88:6142–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970

    Article  CAS  PubMed  Google Scholar 

  20. Prabakaran S, Everley RA, Landrieu I, Wieruszeski JM, Lippens G, Steen H, Gunawardena J (2011) Comparative analysis of Erk phosphorylation suggests a mixed strategy for measuring phospho-form distributions. Mol Syst Biol 7:482. doi:10.1038/msb.2011.15, msb201115 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9:265–277, doi: S1097276502004537 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Bienkiewicz EA, Lumb KJ (1999) Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR 15:203–206

    Article  CAS  PubMed  Google Scholar 

  23. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  CAS  PubMed  Google Scholar 

  24. Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sorensen OW, Griesinger C (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 4:301–306

    Article  CAS  PubMed  Google Scholar 

  25. Weisemann R, Ruterjans H, Bermel W (1993) 3D triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins. J Biomol NMR 3:113–120

    Article  CAS  PubMed  Google Scholar 

  26. Lippens G, Wieruszeski JM, Leroy A, Smet C, Sillen A, Buee L, Landrieu I (2004) Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites. Chembiochem 5:73–78. doi:10.1002/cbic.200300763

    Article  CAS  PubMed  Google Scholar 

  27. Smet C, Leroy A, Sillen A, Wieruszeski JM, Landrieu I, Lippens G (2004) Accepting its random coil nature allows a partial NMR assignment of the neuronal Tau protein. Chembiochem 5:1639–1646. doi:10.1002/cbic.200400145

    Article  CAS  PubMed  Google Scholar 

  28. Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7, e34

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The NMR facilities were funded by the Région Nord, CNRS, Pasteur Institute of Lille, European Community (FEDER), French Research Ministry and the University of Sciences and Technologies of Lille I. We acknowledge support from the TGE RMN THC (FR-3050, France) and the Research Federation FRABio (Univ. Lille, CNRS, FR 3688, FRABio, “Structural & Functional Biochemistry of Biomolecular Assemblies”) for providing the scientific and technical environment. This study was supported by a grant from the LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to Alzheimer’s disease), and in part by the French government funding agency Agence Nationale de la Recherche TAF. S.P. and J.G. were partially supported on NIH R01-GM08157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Smet-Nocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qi, H. et al. (2017). The Study of Posttranslational Modifications of Tau Protein by Nuclear Magnetic Resonance Spectroscopy: Phosphorylation of Tau Protein by ERK2 Recombinant Kinase and Rat Brain Extract, and Acetylation by Recombinant Creb-Binding Protein. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics