Skip to main content

β-Lactoglobulin-Based Nano and Microparticulate Systems for the Protection and Delivery of Bioactives

  • Chapter
  • First Online:
Engineering Foods for Bioactives Stability and Delivery

Part of the book series: Food Engineering Series ((FSES))

Abstract

The new paradigms in human nutrition and the ever-increasing consumer demand for safe and healthy food products have encouraged research in functional foods and nutraceuticals as pharmaceutical surrogates. Food proteins are abundant and from renewable sources, with functional groups conferring interesting structural and functional properties. Their ability to bind small ligands and to form aggregates and electrostatic complexes with other food macromolecules provides numerous applications for oral delivery technology. The current review focuses on the major milk protein β-lactoglobulin, its techno-functional properties and its applications in the formulation of nano- and micro-sized oral delivery platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta E (2008) Testing the effectiveness of nutrient delivery systems. In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, New York, pp 53–106

    Chapter  Google Scholar 

  • Agudelo D, Beauregard M, Bérubé G, Tajmir-Riahi H-A (2012) Antibiotic doxorubicin and its derivative bind milk β-lactoglobulin. J Photoch Photobio B 117:185–192

    Article  CAS  Google Scholar 

  • Augustin MA, Sanguansri P (2009) Chapter 5—nanostructured materials in the food industry. In: Steve LT (ed) Adv. Academic Press, Food Nutr Res, pp 183–213

    Google Scholar 

  • Beaulieu L, Savoie L, Paquin P, Subirade M (2002) Elaboration and characterization of whey protein beads by an emulsification/cold gelation process: application for the protection of retinol. Biomacromolecules 3:239–248

    Article  CAS  Google Scholar 

  • Boland M (2011) Whey proteins. In: Phillips GO, Williams PA (ed) Handbook of food proteins. Woodhead Publishing, USA, pp 32–55

    Google Scholar 

  • Bonnaillie LM, Tomasula PM (2009) Whey protein fractionation. In: Onwulata C, Huth P (eds) Whey Processing. Wiley, Functionality and health benefits, pp 15–38

    Google Scholar 

  • Botelho MM, Valente-Mesquita VL, Oliveira KMG, Polikarpov I, Ferreira ST (2000) Pressure denaturation of β-lactoglobulin. Eur J Biochem 267:2235–2241

    Article  CAS  Google Scholar 

  • Busti P, Scarpeci S, Gatti CA, Delorenzi NJ (2002) Use of fluorescence methods to monitor unfolding transitions in β-lactoglobulin. Food Res Int 35:871–877

    Article  CAS  Google Scholar 

  • Caillard R, Mateescu MA, Subirade M (2010) Maillard-type cross-linked soy protein hydrogels as devices for the release of ionic compounds an in vitro study. Food Res Int 43:2349–2355

    Article  CAS  Google Scholar 

  • Chanasattru W, Jones OG, Decker EA, McClements DJ (2009) Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of β-lactoglobuline—Pectin complexes. Food Hydrocoll 23:2450–2457

    Article  CAS  Google Scholar 

  • Chen L, Subirade M (2005) Chitosan/β-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials 26:6041–6053

    Article  CAS  Google Scholar 

  • Chen L, Subirade M (2006) Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27:4646–4654

    Article  CAS  Google Scholar 

  • Chen L, Subirade M (2009) Elaboration and characterization of soy/zein protein microspheres for controlled nutraceutical delivery. Biomacromolecules 10:3327–3334

    Article  CAS  Google Scholar 

  • Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Tech 17:272–283

    Article  CAS  Google Scholar 

  • Chen L, Hebrard G, Beyssac E, Denis S, Subirade M (2010) In vitro study of the release properties of soy-zein protein microspheres with a dynamic artificial digestive system. J Agric Food Chem 58:9861–9867

    Article  CAS  Google Scholar 

  • Collini M, D’Alfonso L, Molinari H, Ragona L, Catalano M, Baldini G (2003) Competitive binding of fatty acids and the fluorescent probe 1-8-anilinonaphthalene sulfonate to bovine β-lactoglobulin. Protein Sci 12:1596–1603

    Article  CAS  Google Scholar 

  • Creamer LK, Loveday SM, Sawyer L (2011) Milk proteins| β-lactoglobulin. In: John WF (ed) Editor-in-chief: encyclopedia of dairy sciences (Second Edition). Academic Press, San Diego, pp 787–794

    Google Scholar 

  • Creighton TE (2010) Physical and chemical basis of molecular biology. In: Creighton TE (ed). Helvetian Press, New York, pp 681

    Google Scholar 

  • Croguennec T, Molle D, Mehra R, Bouhallab S (2004) Spectroscopic characterization of heat-induced nonnative beta-lactoglobulin monomers. Protein Sci 13:1340–1346

    Article  CAS  Google Scholar 

  • Desfougeres Y, Croguennec T, Lechevalier V, Bouhallab S, Nau F (2010) Charge and size drive spontaneous self-assembly of oppositely charged globular proteins into microspheres. J Phys Chem B 114:4138–4144

    Article  CAS  Google Scholar 

  • Diarrassouba F, Liang L, Remondetto GE, Subirade M (2013a) Nanocomplex formation between riboflavin and β-lactoglobulin: Spectroscopic investigation and biological characterization. Food Res Int 52:557–567

    Article  CAS  Google Scholar 

  • Diarrassouba F, Remondetto GE, Liang L, Garrait G, Beyssac E, Subirade M (2013b) Effects of gastrointestinal pH conditions on the stability of the β-lactoglobulin/vitamin D3 complex and on the solubility of vitamin D3. Food Res Int 52:515–521

    Article  CAS  Google Scholar 

  • Diarrassouba F, Garrait G, Remondetto GE, Alvarez P, Beyssac E, Subirade M (2014a) Increased stability and protease resistance of the β-lactoglobulin/vitamin D3 complex. Food Chem 145:646–652

    Article  CAS  Google Scholar 

  • Diarrassouba F, Remondetto G, Garrait G, Alvarez P, Beyssac E, Subirade M (2015) Self-assembly of β-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chem 173:203–209

    Google Scholar 

  • Diarrassouba F, Garrait G, Remondetto GE, Alvarez P, Beyssac E, Subirade M (2014) Increased water solubility, stability and bioavailability of vitamin D3 upon sequestration in β-lactoglobulin—based coagulum, (Unpublished)

    Google Scholar 

  • Divsalar A, Barzegar L, Behbehani GR (2012) Thermal study of a newly synthesized cu(ii) complex binding to bovine β-lactoglobulin. J Chem 2013

    Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161:38–49

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647

    Article  CAS  Google Scholar 

  • Faulks RM, Southon S (2008) Assessing the bioavailability of nutraceuticals. In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, New York, pp 3–25

    Chapter  Google Scholar 

  • Foegeding EA, Davis JP (2011) Food protein functionality: a comprehensive approach. Food Hydrocoll 25:1853–1864

    Article  CAS  Google Scholar 

  • Garti N (2008) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, New York

    Book  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—a review. J Control Release 114:1–14

    Article  CAS  Google Scholar 

  • Gunasekaran S, Ko S, Xiao L (2007) Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng 83:31–40

    Article  CAS  Google Scholar 

  • Guo XJ, Sun XD, Xu SK (2009) Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. J Mol Struct 931:55–59

    Article  CAS  Google Scholar 

  • H.A. Schiffter, 5.46 - The Delivery of Drugs – Peptides and Proteins, in: M.-Y. Editor-in-Chief: Murray (Ed.) Comprehensive Biotechnology (Second Edition), Academic Press, Burlington, 2011, pp. 587–604

    Google Scholar 

  • Health Canada (2013) A new approach to natural health products. Available at: http://www.hc-sc.gc.ca/dhp-mps/prodnatur/nhp-new-nouvelle-psn-eng.php#fnb1-ref. Accessed on 05 Aug 2013

  • Hebrard G, Blanquet S, Beyssac E, Remondetto G, Subirade M, Alric M (2006) Use of whey protein beads as a new carrier system for recombinant yeasts in human digestive tract. J Biotechnol 127:151–160

    Article  CAS  Google Scholar 

  • Hebrard G, Hoffart V, Cardot JM, Subirade M, Alric M, Beyssac E (2009) Investigation of coated whey protein/alginate beads as sustained release dosage form in simulated gastrointestinal environment. Drug Dev Ind Pharm 35:1103–1112

    Article  CAS  Google Scholar 

  • Hebrard G, Hoffart V, Beyssac E, Cardot JM, Alric M, Subirade M (2010) Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J Microencapsul 27:292–302

    Article  CAS  Google Scholar 

  • Hebrard G, Hoffart V, Cardot JM, Subirade M, Beyssac E (2013) Development and characterization of coated-microparticles based on whey protein/alginate using the Encapsulator device. Drug Dev Ind Pharm 128–137

    Google Scholar 

  • IFST, Nanotechnology (2006). Information statement, In: P.A.a.T.L. Committees (ed) Institute of food science & technology, London, UK

    Google Scholar 

  • Jiang HR, Liu N (2010) Self-assembled β-lactoglobulin–conjugated linoleic acid complex for colon cancer-targeted substance. J Dairy Sci 93:3931–3939

    Article  CAS  Google Scholar 

  • Jones OG, McClements DJ (2010) Biopolymer nanoparticles from heat-treated electrostatic protein–polysaccharide complexes: factors affecting particle characteristics. J Food Sci 75:N36–N43

    Article  CAS  Google Scholar 

  • Jones OG, Decker EA, McClements DJ (2009) Formation of biopolymer particles by thermal treatment of beta-lactoglobulin-pectin complexes. Food Hydrocoll 23:1312–1321

    Article  CAS  Google Scholar 

  • Jones OG, Decker EA, McClements DJ (2010a) Comparison of protein–polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation. J Colloid Interface Sci 344:21–29

    Article  CAS  Google Scholar 

  • Jones OG, Lesmes U, Dubin P, McClements DJ (2010b) Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of beta-lactoglobulin-pectin complexes. Food Hydrocoll 24:374–383

    Article  CAS  Google Scholar 

  • Kanakis CD, Hasni I, Bourassa P, Tarantilis PA, Polissiou MG, Tajmir-Riahi H-A (2011) Milk β-lactoglobulin complexes with tea polyphenols. Food Chem 127:1046–1055

    Article  CAS  Google Scholar 

  • Keller J (2013) Gastrointestinal digestion and absorption. In: William JL, Lane MD (ed) Editors-in-chief: encyclopedia of biological chemistry. Academic Press, Waltham, pp 354–359

    Google Scholar 

  • Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. BBA Proteins Proteom 1751:119–139

    Article  CAS  Google Scholar 

  • Kim KK, Pack DW (2006) Microspheres for drug delivery bioMEMS and biomedical nanotechnology. In: Ferrari M, Lee AP, Lee LJ (eds), Springer US, pp 19–50

    Google Scholar 

  • Ko S, Gunasekaran S (2006) Preparation of sub-100-nm β-lactoglobulin (BLG) nanoparticles. J Microencapsul 23:887–898

    Article  CAS  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2002) The ligand-binding site of bovine β-lactoglobulin: evidence for a function? J Mol Biol 318:1043–1055

    Article  CAS  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2004) Invited review: β-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87:785–796

    Article  CAS  Google Scholar 

  • Krebs MRH, Devlin GL, Donald AM (2007) Protein particulates: another generic form of protein aggregation? Biophys J 92:1336–1342

    Article  CAS  Google Scholar 

  • Lafitte G (2008) Structure of the gastrointestinal mucus layer and implications for controlled release and delivery of functional food ingredients. In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, New York, pp 26–52

    Chapter  Google Scholar 

  • Lakowicz JR (2006a) Principles of fluorescence spectroscopy. In: Lakowicz JR (ed) Springer. USA, US, Baltimore, MD

    Google Scholar 

  • Lakowicz JR (2006) Energy transfer, In: Springer (ed) Principles of fluorescence spectroscopy, New York, USA, pp 443–475

    Google Scholar 

  • Liang L, Subirade M (2010) β-lactoglobulin/folic acid complexes: formation, characterization, and biological implication. J Phys Chem B 114:6707–6712

    Article  CAS  Google Scholar 

  • Liang L, Subirade M (2012) Study of the acid and thermal stability of β-lactoglobulin–ligand complexes using fluorescence quenching. Food Chem 132:2023–2029

    Article  CAS  Google Scholar 

  • Liang H-C, Chang W-H, Lin K-J, Sung H-W (2003) Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. J Biomed Mater Res A 65A:271–282

    Article  CAS  Google Scholar 

  • Liang L, Tajmir-Riahi HA, Subirade M (2008) Interaction of β-lactoglobulin with resveratrol and its biological implications. Biomacromolecules 9:50–56

    Article  CAS  Google Scholar 

  • Liang L, Tremblay-Hebert V, Subirade M (2011) Characterisation of the beta-lactoglobulin/alpha-tocopherol complex and its impact on alpha-tocopherol stability. Food Chem 126:821–826

    Article  CAS  Google Scholar 

  • Liu HC, Chen WL, Mao SJT (2007) Antioxidant nature of bovine milk β-Lactoglobulin. J Dairy Sci 90:547–555

    Article  CAS  Google Scholar 

  • Livney YD (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid In 15:73–83

    Article  CAS  Google Scholar 

  • Loch J, Polit A, Górecki A, Bonarek P, Kurpiewska K, Dziedzicka-Wasylewska M, Lewiński K (2011) Two modes of fatty acid binding to bovine β-lactoglobulin—crystallographic and spectroscopic studies. J Mol Recognit 24:341–349

    Article  CAS  Google Scholar 

  • Luo Y, Teng Z, Wang Q (2012) Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem 60:836–843

    Article  CAS  Google Scholar 

  • Mahler H-C, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98:2909–2934

    Article  CAS  Google Scholar 

  • Mandalari G, Mackie AM, Rigby NM, Wickham MSJ, Mills ENC (2009) Physiological phosphatidylcholine protects bovine β-lactoglobulin from simulated gastrointestinal proteolysis. Mol Nutr Food Res 53:S131–S139

    Article  Google Scholar 

  • Mehra R, O’Kennedy BT (2009) Separation of β-Lactoglobulin from whey: its physico-chemical properties and potential uses. In: Huth CIOaPJ (ed) Whey processing, functionality and health benefits. Wiley-Blackwell, Oxford, UK, pp 39–62

    Google Scholar 

  • Meredith SC (2006) Protein denaturation and aggregation. Ann N Y Acad Sci 1066:181–221

    Google Scholar 

  • Moore J, Cerasoli E (2010) Particle light scattering methods and applications. In: John L (ed) Editor-in-chief: encyclopedia of spectroscopy and spectrometry (Second Edition). Academic Press, Oxford, pp 2077–2088

    Google Scholar 

  • Morris PE, FitzGerald RJ (2009) Whey Proteins and Peptides in Human Health. In: Onwulata C, Huth P (eds) Whey processing. Wiley, Functionality and Health Benefits, pp 285–384

    Google Scholar 

  • Murphy RM, Lee CC (2006) Laser light scattering as an indispensable tool for probing protein aggregation. In: Misbehaving proteins. Springer, New York, pp 147–165

    Google Scholar 

  • Nesterenko A, Alric I, Silvestre F, Durrieu V (2013) Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Ind Crops Prod 42:469–479

    Article  CAS  Google Scholar 

  • Nicolai T, Durand D (2013) Controlled food protein aggregation for new functionality. Curr Opin Colloid Interface Sci 18:249–256

    Article  CAS  Google Scholar 

  • Nicolai T, Britten M, Schmitt C (2011) β-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocoll 25:1945–1962

    Article  CAS  Google Scholar 

  • Nina B, Polavarapu PL, Nakanishi K, Woody RW (2012) Comprehensive chiroptical spectroscopy: applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules. In: Nina Berova PLP, Nakanishi K, Woody RW (ed) Comprehensive chiroptical spectroscopy. Wiley, New York

    Google Scholar 

  • Núñez Sellés AJ (2011) Natural health products (NHPs), In: Nriagu JO (ed) Encyclopedia of environmental health, Elsevier, Burlington, pp 33–43

    Google Scholar 

  • Oliveira KMG, Valente-Mesquita VL, Botelho MM, Sawyer L, Ferreira ST, Polikarpov I (2001) Crystal structures of bovine β-lactoglobulin in the orthorhombic space group C2221. Eur J Biochem 268:477–484

    CAS  Google Scholar 

  • Onwulata CI, Huth PJ (2008) Whey processing, functionality and health benefits. Wiley, New York

    Book  Google Scholar 

  • O’Regan J, Ennis MP, Mulvihill DM (2009) Milk proteins. In: Phillips PAWGO (ed) Handbook of hydrocolloids. Woodhead Publishing Limited, Cambridge, UK, pp 298–358

    Chapter  Google Scholar 

  • Qin BY, Bewley MC, Creamer LK, Baker HM, Baker EN, Jameson GB (1998) Structural basis of the tanford transition of bovine β-lactoglobulin. Biochemistry 37:14014–14023

    Article  CAS  Google Scholar 

  • Ragona L, Zetta L, Fogolari F, Molinari H, Pérez DM, Puyol P, Kruif KD, Löhr F, Rüterjans H (2000) Bovine β-lactoglobulin: Interaction studies with palmitic acid. Protein Sci 9:1347–1356

    Article  CAS  Google Scholar 

  • Ragona L, Fogolari F, Catalano M, Ugolini R, Zetta L, Molinari H (2003) EF loop conformational change triggers ligand binding in β-lactoglobulins. J Biol Chem 278:38840–38846

    Article  CAS  Google Scholar 

  • Ranade V, Cannon J (2011) B., Oral Drug Delivery. In: Press C (ed) Drug delivery systems. CRC Press Talyors & Francis Group, Boca Raton, FL, USA, pp 169–238

    Google Scholar 

  • Remondetto GE, Subirade M (2003) Molecular mechanisms of Fe2+ -induced beta-lactoglobulin cold gelation. Biopolymers 69:461–469

    Article  CAS  Google Scholar 

  • Remondetto GE, Beyssac E, Subirade M (2004) Iron availability from whey protein hydrogels: an in vitro study. J Agric Food Chem 52:8137–8143

    Article  CAS  Google Scholar 

  • Riihimäki LH, Vainio MJ, Heikura JMS, Valkonen KH, Virtanen VT, Vuorela PM (2008) Binding of phenolic compounds and their derivatives to bovine and reindeer β-lactoglobulin. J Agric Food Chem 56:7721–7729

    Article  CAS  Google Scholar 

  • Ron N, Zimet P, Bargarum J, Livney YD (2010) Beta-lactoglobulin–polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int Dairy J 20:686–693

    Article  CAS  Google Scholar 

  • Rouabhia M, Gilbert V, Wang H, Subirade M (2007) In vivo evaluation of whey protein-based biofilms as scaffolds for cutaneous cell cultures and biomedical applications. Biomed Mater 2:S38–S44

    Article  CAS  Google Scholar 

  • Sakurai K, Goto Y (2006) Dynamics and mechanism of the tanford transition of bovine β-lactoglobulin studied using heteronuclear NMR spectroscopy. J Mol Biol 356:483–496

    Article  CAS  Google Scholar 

  • Sakurai K, Goto Y (2007) Principal component analysis of the pH-dependent conformational transitions of bovine β-lactoglobulin monitored by heteronuclear NMR. Proc Natl Acad Sci U S A 104:15346–15351

    Article  CAS  Google Scholar 

  • Sakurai K, Konuma T, Yagi M, Goto Y (2009) Structural dynamics and folding of beta-lactoglobulin probed by heteronuclear NMR. BBA General Subj 1790:527–537

    Article  CAS  Google Scholar 

  • Salazar J, Ghanem A, Müller RH, Möschwitzer JP (2012) Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top–down approaches. Eur J Pharm Biopharm 81:82–90

    Article  CAS  Google Scholar 

  • Santus G, Baker RW (2003) Pharmaceuticals, controlled release of. In: Robert AM (ed) Editor-in-chief: encyclopedia of physical science and technology (Third Edition), Academic Press, New York, pp 791–803

    Google Scholar 

  • Sawyer L (2013) β-Lactoglobulin. In: Paul PFF, McSweeney LH (ed) Advanced dairy chemistry, Springer US, pp 211–259

    Google Scholar 

  • Schmitt C, Turgeon SL (2011) Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface Sci 167:63–70

    Article  CAS  Google Scholar 

  • Schmitt C, Sanchez C, Despond S, Renard D, Thomas F, Hardy J (2000) Effect of protein aggregates on the complex coacervation between β-lactoglobulin and acacia gum at pH 4.2. Food Hydrocoll 14:403–413

    Article  CAS  Google Scholar 

  • Schmitt C, Aberkane, Sanchez C (2009) Protein—polysaccharide complexes and coacervates. In: Handbook of hydrocolloids, pp 420–476

    Google Scholar 

  • Sehgal PK, Srinivasan A (2009) Collagen-coated microparticles in drug delivery. Expert Opin Drug Deliv 6:687–695

    Article  CAS  Google Scholar 

  • Semo E, Kesselman E, Danino D, Livney YD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll 21:936–942

    Article  CAS  Google Scholar 

  • Shpigelman A, Cohen Y, Livney YD (2012) Thermally-induced β-lactoglobulin–EGCG nanovehicles: loading, stability, sensory and digestive-release study. Food Hydrocoll 29:57–67

    Article  CAS  Google Scholar 

  • Singh H (2011) Milk protein products| functional properties of milk proteins. In: John WF (ed) Editor-in-chief: encyclopedia of dairy sciences (Second Edition), Academic Press, San Diego, pp 887–893

    Google Scholar 

  • Sok Line VL, Remondetto GE, Subirade M (2005) Cold gelation of β-lactoglobulin oil-in-water emulsions, Food Hydrocoll, 19:269–278

    Google Scholar 

  • Somchue W, Sermsri W, Shiowatana J, Siripinyanond A (2009) Encapsulation of α-tocopherol in protein-based delivery particles. Food Res Int 42:909–914

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  Google Scholar 

  • Stănciuc N, Aprodu I, Râpeanu G, Bahrim G (2012) Fluorescence spectroscopy and molecular modeling investigations on the thermally induced structural changes of bovine β-lactoglobulin. Innov Food Sci Emerg Technol 15:50–56

    Article  CAS  Google Scholar 

  • Stojadinovic M, Radosavljevic J, Ognjenovic J, Vesic J, Prodic I, Stanic-Vucinic D, Cirkovic Velickovic T (2013) Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chem 136:1263–1271

    Article  CAS  Google Scholar 

  • Sun FS, Ju CX, Chen JH, Liu S, Liu N, Wang KK, Liu CG (2012) Nanoparticles based on hydrophobic alginate derivative as nutraceutical delivery vehicle: vitamin D-3 loading. Artif Cells Blood Substit Immobil Biotechnol 40:113–119

    Article  CAS  Google Scholar 

  • Taulier N, Chalikian TV (2001) Characterization of pH-induced transitions of β-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies. J Mol Biol 314:873–889

    Article  CAS  Google Scholar 

  • Teng Z, Li Y, Luo Y, Zhang B, Wang Q (2013) Cationic beta-lactoglobulin nanoparticles as a bioavailability enhancer: protein characterization and particle formation. Biomacromolecules 3:3

    Google Scholar 

  • Tromelin A, Guichard E (2006) Interaction between flavour compounds and β-lactoglobulin: approach by NMR and 2D/3D-QSAR studies of ligands. Flavour Fragr J 21:13–24

    Article  CAS  Google Scholar 

  • Tunick MH (2009) Whey protein production and utilization: a brief history. In: Huth CIOaPJ (ed) Whey processing, functionality and health benefits. Wiley-Blackwell, Oxford, UK, pp. 1–13

    Google Scholar 

  • Turgeon SL, Laneuville SI (2009) Protein + polysaccharide coacervates and complexes: from scientific background to their application as functional ingredients in food products In: Stefan K, Ian TN, Johan ITN B Kasapis S, Johan BU (eds) UbbinkA2—Modern biopolymer science. Academic Press, San Diego, pp 327–363

    Google Scholar 

  • Uhrínová S, Smith MH, Jameson GB, Uhrín D, Sawyer L, Barlow PN (2000) Structural changes accompanying pH-induced dissociation of the β-lactoglobulin dimer. Biochemistry 39:3565–3574

    Article  CAS  Google Scholar 

  • Vabulas RM, Hartl FU (2011) Aberrant protein interactions in amyloid disease. Cell Cycle 10:1512–1513

    Article  CAS  Google Scholar 

  • van de Weert M (2010) Fluorescence quenching to study protein-ligand binding: common errors. J Fluoresc 20:625–629

    Article  CAS  Google Scholar 

  • Verma S, Gokhale R, Burgess DJ (2009) A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 380:216–222

    Article  CAS  Google Scholar 

  • Vo-Dinh T (2005) Protein nanotechnology. In: Vo-Dinh T (ed) Protein nanotechnology. Humana Press, New York, pp 1–13

    Chapter  Google Scholar 

  • von Staszewski M, Jara FL, Ruiz ALTG, Jagus RJ, Carvalho JE, Pilosof AMR (2012) Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: impact on protein gelation and polyphenols antiproliferative activity. J Funct Foods 4:800–809

    Article  CAS  Google Scholar 

  • Wang R, Tian ZG, Chen L (2011a) A novel process for microencapsulation of fish oil with barley protein. Food Res Int, 44:2735–2741

    Google Scholar 

  • Wang R, Tian Z, Chen L (2011b) Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds. Int J Pharm, 406:153–162

    Google Scholar 

  • Weiss CH, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Woody RW (2012) Electronic circular dichroism of proteins. In: Nina Berova PLP, Nakanishi K, Woody RW (ed) Comprehensive chiroptical spectroscopy. Wiley, New York, pp 473–497

    Google Scholar 

  • Wooster TJ, Augustin MA (2006) β-lactoglobulin-dextran Maillard conjugates: their effect on interfacial thickness and emulsion stability. J Colloid Interface Sci 303:564–572

    Article  CAS  Google Scholar 

  • Yang M-C, Guan H-H, Liu M-Y, Lin Y-H, Yang J-M, Chen W-L, Chen C-J, Mao SJT (2008a) Crystal structure of a secondary vitamin D3 binding site of milk β-lactoglobulin. Proteins 71:1197–1210

    Article  CAS  Google Scholar 

  • Yang MC, Guan HH, Yang JM, Ko CN, Liu MY, Lin YH, Huang YC, Chen CJ, Mao SJT (2008b) Rational design for crystallization of β-lactoglobulin and vitamin D3 complex: Revealing a secondary binding site Cryst. Growth Des. 8:4268–4276

    Article  CAS  Google Scholar 

  • Yang MC, Chen NC, Chen CJ, Wu CY, Mao SJ (2009) Evidence for beta-lactoglobulin involvement in vitamin D transport in vivo–role of the gamma-turn (Leu-Pro-Met) of beta-lactoglobulin in vitamin D binding. FEBS J 276:2251–2265

    Article  CAS  Google Scholar 

  • Yu C-Y, Yin B-C, Zhang WN, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf B Biointerfaces 68:245–249

    Article  CAS  Google Scholar 

  • Zhao H, Ge M, Zhang Z, Wang W, Wu G (2006) Spectroscopic studies on the interaction between riboflavin and albumins. Spectrochim Acta A 65:811–817

    Article  CAS  Google Scholar 

  • Zimet P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll 23:1120–1126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Subirade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Diarrassouba, F., Garrait, G., Remondetto, G., Subirade, M. (2017). β-Lactoglobulin-Based Nano and Microparticulate Systems for the Protection and Delivery of Bioactives. In: Roos, Y., Livney, Y. (eds) Engineering Foods for Bioactives Stability and Delivery. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6595-3_7

Download citation

Publish with us

Policies and ethics