Skip to main content

High-Resolution Intravital Microscopy of Tumor Angiogenesis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1464))

Abstract

Real-time evaluation of vascular effects in an animal skinfold window model by intravital microscopy (IVM) provides a powerful tool to improve insight into vascular development and vascular therapy. The potential of IVM to examine processes in tissues (e.g., tumors, inflammatory sites), in a noninvasive way, enables determination of the kinetics of processes under study at any given time point. The introduction of sensitive digital cameras, confocal and multiphoton microscopy, and powerful imaging software greatly improved the quality of the images acquired. Together with the introduction of better fluorescent probes, with a shift towards red and near-infrared fluorescence, confocal and multiphoton microscopy enables deeper imaging with less (photo)toxicity. IVM is particularly useful for examination of processes in time, which span seconds up to days or even weeks, such as tumor vascular development. Here we describe an advanced dorsal skinfold window chamber for high-resolution intravital microscopy of tumor angiogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  3. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–435

    Article  CAS  PubMed  Google Scholar 

  4. Palmer GM, Fontanella AN, Shan S, Hanna G, Zhang G, Fraser CL, Dewhirst MW (2011) In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters. Nat Protoc 6(9):1355–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2(4):266–276

    Article  CAS  PubMed  Google Scholar 

  6. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868, Erratum in: Nat Med 2001;7(9):1069

    Article  CAS  PubMed  Google Scholar 

  7. Prasher DC (1995) Using GFP, to see the light. Trends Genet 11(8):320–323

    Article  CAS  PubMed  Google Scholar 

  8. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  CAS  PubMed  Google Scholar 

  9. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92(2):143–147

    Article  CAS  PubMed  Google Scholar 

  10. Potter SM, Wang CM, Garrity PA, Fraser SE (1996) Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy. Gene 173(1 Spec No):25–31

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman RM (2001) Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 30(5):1016–1022, 1024–1026

    Google Scholar 

  12. Lu T, Lokerse WJ, Seynhaeve AL, Koning GA, Ten Hagen TL (2015) Formulation and optimization of idarubicin thermosensitive liposomes provides ultrafast triggered release at mild hyperthermia and improves tumor response. J Control Release 220(Pt A):425–437

    Article  CAS  PubMed  Google Scholar 

  13. Li L, ten Hagen TL, Hossann M, Süss R, van Rhoon GC, Eggermont AM, Haemmerich D, Koning GA (2013) Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J Control Release 168(2):142–150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo L. M. ten Hagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Seynhaeve, A.L.B., ten Hagen, T.L.M. (2016). High-Resolution Intravital Microscopy of Tumor Angiogenesis. In: Ribatti, D. (eds) Tumor Angiogenesis Assays. Methods in Molecular Biology, vol 1464. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3999-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3999-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3997-8

  • Online ISBN: 978-1-4939-3999-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics