Skip to main content

Preparation of Chromatin Templates to Study RNA Polymerase I Transcription In Vitro

  • Protocol
  • First Online:
Book cover The Nucleolus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1455))

Abstract

Cellular DNA is packaged into chromatin, which is the substrate of all DNA-dependent processes in eukaryotes. The regulation of chromatin requires specialized enzyme activities to allow the access of sequence-specific binding proteins and RNA polymerases. In order to dissect chromatin-dependent features of transcription regulation in detail, in vitro systems to generate defined chromatin templates for transcription are required. I present a protocol that allows the assembly of nucleosomes on ribosomal RNA (rRNA) minigenes by salt gradient dialysis and subsequent sucrose gradient centrifugation. This procedure yields high nucleosome occupancy and high dynamic response in subsequent transcriptional analysis. It provides an invaluable tool to study rRNA gene transcription, as transcription on free DNA is clearly different from the more in vivo-like transcription on reconstituted chromatin templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knezetic JA, Luse DS (1986) The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45:95–104

    Article  CAS  PubMed  Google Scholar 

  2. Lorch Y, LaPointe JW, Kornberg RD (1987) Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49:203–210

    Article  CAS  PubMed  Google Scholar 

  3. Almouzni G, Méchali M, Wolffe AP (1990) Competition between transcription complex assembly and chromatin assembly on replicating DNA. EMBO J 9:573–582

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Längst G, Blank TA, Becker PB, Grummt I (1997) RNA polymerase I transcription on nucleosomal templates: the transcription termination factor TTF-I induces chromatin remodeling and relieves transcriptional repression. EMBO J 16:760–768. doi:10.1093/emboj/16.4.760

    Article  PubMed  PubMed Central  Google Scholar 

  5. Längst G, Becker PB, Grummt I (1998) TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J 17:3135–3145. doi:10.1093/emboj/17.11.3135

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diermeier S, Grummt I, Németh A et al (2013) Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites. PLoS Genet 9:e1003786. doi:10.1371/journal.pgen.1003786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grummt I, Längst G (2013) Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim Biophys Acta 1829:393–404. doi:10.1016/j.bbagrm.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  8. Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281–300

    Article  CAS  PubMed  Google Scholar 

  9. Axel R, Melchior W, Sollner-Webb B, Felsenfeld G (1974) Specific sites of interaction between histones and DNA in chromatin. Proc Natl Acad Sci U S A 71:4101–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patterton HG, von Holt C (1993) Negative supercoiling and nucleosome cores. I. The effect of negative supercoiling on the efficiency of nucleosome core formation in vitro. J Mol Biol 229:623–636. doi:10.1006/jmbi.1993.1068

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan N, Moore IK, Moore IK et al (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366. doi:10.1038/nature07667

    Article  CAS  PubMed  Google Scholar 

  12. Simpson RT, Stafford DW (1983) Structural features of a phased nucleosome core particle. Proc Natl Acad Sci U S A 80:51–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neubauer B, Linxweiler W, Hörz W (1986) DNA engineering shows that nucleosome phasing on the African green monkey alpha-satellite is the result of multiple additive histone-DNA interactions. J Mol Biol 190:639–645

    Article  CAS  PubMed  Google Scholar 

  14. Felle M, Exler J, Merkl R et al (2010) DNA sequence encoded repression of rRNA gene transcription in chromatin. Nucleic Acids Res 38:5304–5314. doi:10.1093/nar/gkq263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schroth GP, Siino JS, Cooney CA et al (1992) Intrinsically bent DNA flanks both sides of an RNA polymerase I transcription start site. Both regions display novel electrophoretic mobility. J Biol Chem 267:9958–9964

    CAS  PubMed  Google Scholar 

  16. Marilley M, Pasero P (1996) Common DNA structural features exhibited by eukaryotic ribosomal gene promoters. Nucleic Acids Res 24:2204–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Becker PB, Wu C (1992) Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12:2241–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lusser A, Urwin DL, Kadonaga JT (2005) Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12:160–166. doi:10.1038/nsmb884

    Article  CAS  PubMed  Google Scholar 

  19. Pazin MJ, Bhargava P, Geiduschek EP, Kadonaga JT (1997) Nucleosome mobility and the maintenance of nucleosome positioning. Science 276:809–812

    Article  CAS  PubMed  Google Scholar 

  20. Strohner R, Németh A, Nightingale KP et al (2004) Recruitment of the nucleolar remodeling complex NoRC establishes ribosomal DNA silencing in chromatin. Mol Cell Biol 24:1791–1798. doi:10.1128/MCB.24.4.1791-1798.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simon RH, Felsenfeld G (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6:689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16. doi:10.1385/1-59259-681-9:1

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is funded by the German Research Community (DFG, grants within the SFB960)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Längst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Längst, G. (2016). Preparation of Chromatin Templates to Study RNA Polymerase I Transcription In Vitro. In: Németh, A. (eds) The Nucleolus. Methods in Molecular Biology, vol 1455. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3792-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3792-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3790-5

  • Online ISBN: 978-1-4939-3792-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics