Skip to main content

Localization of Nitric Oxide in Wheat Roots by DAF Fluorescence

  • Protocol
  • First Online:
Plant Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1424))

Abstract

Nitric oxide is a free radical signal molecule. Various methods are available for measurement of NO. Out of all methods, fluorescent probes to localize NO is very widely used method. Diaminofluorescein in diacetate form (DAF-2DA) is most widely probe for NO measurement. This method is based on application of 4,5-diaminofluorescein diacetate (DAF-2DA) which is actively diffused into cells, once taken up by cells cytoplasmic esterases cleave the acetate groups to generate 4,5-diaminofluorescein; DAF-2. The generated DAF-2 can readily react with N2O3, which is an oxidation product of NO to generate the highly fluorescent DAF-2T (triazolofluorescein). There are various advantages and disadvantages associated with this method, but to its advantage in diffusion closely to NO producing sites, it is widely used for localization studies. Here, we describe method to make sections of the roots and localization of NO in roots subjected to hypoxic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. Hordei. Mol Plant Pathol 6:65–78

    Article  CAS  PubMed  Google Scholar 

  2. Prats E, Carver TLW, Mur LAJ (2008) Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria gramini. Res Microbiol 159:476–480

    Article  CAS  PubMed  Google Scholar 

  3. Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  CAS  PubMed  Google Scholar 

  4. Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant Microbe Interact 17:131–139

    Article  CAS  PubMed  Google Scholar 

  5. Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV (2002) Interfering with nitric oxide measurements. 4,5-Diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J Biol Chem 277:48472–48478

    Article  CAS  PubMed  Google Scholar 

  7. Kim WS, Ye XY, Rubakhin SS, Sweedler JV (2006) Measuring nitric oxide in single neurons by capillary electrophoresis with laser-induced fluorescence: use of ascorbate oxidase in diaminofluorescein measurements. Anal Chem 78:1859–1865

    Article  CAS  PubMed  Google Scholar 

  8. Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57:3043–3055

    Article  CAS  PubMed  Google Scholar 

  9. Rümer S, Krischke M, Fekete A, Mueller MJ, Kaiser WM (2012) DAF-fluorescence without NO: elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol. Nitric Oxide 27(2):123–135

    Article  PubMed  Google Scholar 

  10. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  CAS  PubMed  Google Scholar 

  11. Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem Pharm Bull 46:373–375

    Article  CAS  PubMed  Google Scholar 

  12. Espey MG, Miranda KM, Thomas DD, Wink DA (2001) Distinction between nitrosating mechanisms within human cells and aqueous solution. J Biol Chem 276:30085–30091

    Article  CAS  PubMed  Google Scholar 

  13. Jourd’Heuil D (2002) Increased nitric-oxide dependent nitrosylation of 4,5-diaminofluorescein by oxidants: implications for the measurement of intracellular nitric oxide. Free Radic Biol Med 33:676–684

    Article  PubMed  Google Scholar 

  14. Delledonne M, Zeier J, Marocco C, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guards. J Exp Bot 55:205–212

    Article  CAS  PubMed  Google Scholar 

  16. Gupta KJ, Mur LAJ, Brotman Y Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol Plant Microbe Int 27(4):307–314

    Google Scholar 

  17. Uhlenhut K, Hogger P (2012) Pitfalls and limitations in using 4,5-diaminofluorescein for evaluating the influence of polyphenols on nitric oxide release from endothelial cells. Free Radic Biol Med 52:2266–2275

    Article  CAS  PubMed  Google Scholar 

  18. Vitecek J, Reinohl V, Jones RL (2008) Measuring NO production by plant tissues and suspension cultured cells. Mol Plant 1:270–284

    Article  CAS  PubMed  Google Scholar 

  19. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  20. Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A 101(44):15811–15816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A (2006) Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19(9):970–975

    Article  CAS  PubMed  Google Scholar 

  22. Gabaldon C, Gomez Ros LV, Pedreno MA, Ros Barcelo A (2005) Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 165(1):121–130

    Article  CAS  PubMed  Google Scholar 

  23. Begara-Morales JC, Chaki M, Sanchez-Calvo B, Mata-Pérez C, Leterrier M, Palma JM, Barroso JB, Corpas FJ (2013) Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 64(4):1121–1134. doi:10.1093/jxb/ert006, Epub 2013 Jan 28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:113–116

    Article  Google Scholar 

  25. Agurla S, Gayatri G, Raghavendra AS (2014) Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 43:89–96

    Article  CAS  PubMed  Google Scholar 

  26. Ruzin SE (1999) Plant microtechniques and microscopy. Oxford University Press, New York

    Google Scholar 

  27. Peterson RL, Peterson CA, Melville LH (2008) Teaching plant anatomy. NRC Press, Ottawa, Canada. ISBN 978-0-660-19798-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapuganti Jagadis Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wany, A., Gupta, K.J. (2016). Localization of Nitric Oxide in Wheat Roots by DAF Fluorescence. In: Gupta, K. (eds) Plant Nitric Oxide. Methods in Molecular Biology, vol 1424. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3600-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3600-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3598-7

  • Online ISBN: 978-1-4939-3600-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics