Skip to main content

Chemiluminescence Detection of Nitric Oxide from Roots, Leaves, and Root Mitochondria

  • Protocol
  • First Online:
Plant Nitric Oxide

Abstract

NO is a free radical with short half-life and high reactivity; due to its physiochemical properties it is very difficult to detect the concentrations precisely. Chemiluminescence is one of the robust methods to quantify NO. Detection of NO by this method is based on reaction of nitric oxide with ozone which leads to emission of light and amount of light is proportional to NO. By this method NO can be measured in the range of pico moles to nano moles range. Using direct chemiluminescence method, NO emitted into the gas stream can be detected whereas using indirect chemiluminescence oxidized forms of NO can also be detected. We detected NO using purified nitrate reductase, mitochondria, cell suspensions, and roots; detail measurement method is described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mur LAJ, Mandon J, Persijn S, Cristescu S, Moshkov I, Novikova G, Hall M, Hareen F, Hebelstrup K, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gupta KJ, Fernie AR, Kaiser WM, Van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16(3):160–168

    Article  CAS  PubMed  Google Scholar 

  3. Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants–where do we stand? Physiol Plant 138(4):372–383

    Article  CAS  PubMed  Google Scholar 

  4. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25(4–5):434–456

    Article  CAS  PubMed  Google Scholar 

  5. Agurla S, Gayatri G, Raghavendra AS (2014) Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 43:83–96

    Article  Google Scholar 

  6. Gupta KJ, Igamberdiev AU (2013) Recommendations of using at least two different methods for measuring NO. Front Plant Physiol 4:58

    CAS  Google Scholar 

  7. Mur LAJ, Mandon J, Cristescu SM, Harren FJ, Prats E (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181(5):509–519

    Article  CAS  PubMed  Google Scholar 

  8. Vitecek J, Reinohla V, Jones RL (2008) Measuring NO production by plant tissues and suspension cultured cells. Mol Plant 1:270–284

    Article  CAS  PubMed  Google Scholar 

  9. Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  10. Harper JE (1981) Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol 68:1488–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klepper LA (1987) Nitric oxide emissions from soybean leaves during in vivo nitrate reductase assays. Plant Physiol 85:96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  13. Gupta KJ (2007) Nitric oxide in plants: Investigation of synthesis pathways and role in defense against avirulent Pseudomonas. Thesis, Würzburg, Germany

    Google Scholar 

  14. Chen J, Vandelle E, Bellin D, Delledonne M (2014) Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: where there’s a will there’s a way. Nitric Oxide 43:81–88

    Article  CAS  PubMed  Google Scholar 

  15. Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, Leon AM, Sandalio LM, del Rı´o AL (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  CAS  PubMed  Google Scholar 

  16. Planchet E, Sonoda M, Zeier J, Kaiser WM (2006) Nitric oxide (NO) as an intermediate in the cryptogein induced hypersensitive response a critical re-evaluation. Plant Cell Environ 29:59–69

    Article  CAS  PubMed  Google Scholar 

  17. Planchet E, Gupta KJ, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate-limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  CAS  PubMed  Google Scholar 

  18. Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51(4):57

    Article  Google Scholar 

  19. Conrath U, Amoroso G, Kohle H, Sultemeyer DF (2004) Non-invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. Plant J 38:1015–1022

    Article  CAS  PubMed  Google Scholar 

  20. Griveau S, Besson-Bard A, Bediqui F, Wendehenne D (2015) Electrochemical detection of nitric oxide in plant cell suspension. In: Walker J, Gupta KJ (eds) Methods in molecular biology. Springer, New York

    Google Scholar 

  21. Shibuki K (1990) An electrochemical microprobe for detecting nitric-oxide release in brain-tissue. Neurosci Res 9:69–76

    Article  CAS  PubMed  Google Scholar 

  22. Besson-Bard A, Griveau S, Bedioui F, Wendehenne D (2008) Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses. J Exp Bot 59:3407–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weaver J, Porasuphatana S, Tsai P, Budzichowski T, Rosen GM (2005) Spin trapping nitric oxide from neuronal nitric oxide synthase: a look at several iron–dithiocarbamate complexes. Free Radic Res 39:1027–1033. doi:10.1080/10715760500231885

    Article  CAS  PubMed  Google Scholar 

  24. Murphy ME, Noack E (1994) Nitric oxide assay using hemoglobin method. Methods Enzymol 233:240–250. doi:10.1016/S0076-6879(94)33027-1

    Article  CAS  PubMed  Google Scholar 

  25. Cvetkovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol 195

    Google Scholar 

  26. Johnson C, Stout P, Broyer T, Carlton A (1957) Comparative chlorine requirements of different plant species. Plant Soil 8:337–353

    Article  CAS  Google Scholar 

  27. Vanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, McIntosh L (1995) Alternative oxidase activity in tobacco leaf mitochondria. Dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol 109:353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishimura M, Douce R, Akazawa T (1982) Isolation and characterization of metabolically competent mitochondria from spinach leaf protoplasts. Plant Physiol 669:916–920

    Article  Google Scholar 

  29. Duncan O, Taylor NL, Carrie C, Eubel H, Kubiszewski-Jakubiak S, Zhang B, Narsai R, Millar AH, Whelan J (2011) Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of Arabidopsis. Plant Physiol 157(3):1093–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braman RS, Hendrix SA (1989) Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal Chem 61:2715–2718

    Article  CAS  PubMed  Google Scholar 

  31. Mur LAJ, Santosa IE, Laarhoven LJJ, Holton NJ, Harren FJM, Smith AR (2005) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Ramalingaswami Fellowship funded to JGK by DBT. I thank Werner Kaiser, University of Wuerzburg, for introducing chemiluminescence method. RJ and PKP are currently funded by UGC Fellowship for doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapuganti Jagadis Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wany, A. et al. (2016). Chemiluminescence Detection of Nitric Oxide from Roots, Leaves, and Root Mitochondria. In: Gupta, K. (eds) Plant Nitric Oxide. Methods in Molecular Biology, vol 1424. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3600-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3600-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3598-7

  • Online ISBN: 978-1-4939-3600-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics