Skip to main content

An Overview of Methods in Plant Nitric Oxide (NO) Research: Why Do We Always Need to Use Multiple Methods?

  • Protocol
  • First Online:
Plant Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1424))

Abstract

The free radical nitric oxide (NO) is a universal signaling molecule among living organisms. To investigate versatile functions of NO in plants it is essential to analyze biologically produced NO with an appropriate method. Owing to the uniqueness of NO, plant researchers may encounter difficulties in applying methods that have been developed for mammalian study. Based on our experience, we present here a practical guide to NO measurement fitted to plant biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    Article  CAS  Google Scholar 

  2. Mur LAJ, Mandon J, Persijn S et al (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:1–17

    Article  Google Scholar 

  3. Yamasaki H, Itoh RD, Bouchard JN et al (2011) Nitric oxide synthase-like activities in plants. In: Foyer CH, Zhang H (eds) Nitrogen metabolism in plants in the post-genomic era, vol 42, Annual Plant Reviews. Blackwell Publishing Ltd, West Sussex, pp 103–125

    Google Scholar 

  4. Leshem YY (2000) Nitric oxide in plants: occurrence, function and use. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  5. Yamasaki H (2004) Nitric oxide research in plant biology: its past and future. In: Magalhaes JR, Singh RP, Passos LP (eds) Nitric oxide signaling in higher plants. Focus on plant molecular biology. Studium Press, Houston, pp 1–23

    Google Scholar 

  6. Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci 11:522–524

    Article  CAS  PubMed  Google Scholar 

  7. Koppenol WH, Traynham JG (1996) Say NO to nitric oxide: nomenclature for nitrogen- and oxygen-containing compounds. Methods Enzymol 268:3–7

    Article  CAS  PubMed  Google Scholar 

  8. Yamasaki H, Watanabe NS, Fukuto J et al (2014) Nitrite-dependent nitric oxide production pathway: diversity of NO production systems. In: Tsukahara H, Kaneko K (eds) Studies on pediatric disorders. Springer, New York, pp 35–54

    Chapter  Google Scholar 

  9. Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  11. Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1411:263–272

    Article  CAS  PubMed  Google Scholar 

  12. Rogstam A, Larsson JT, Kjelgaard P et al (2007) Mechanisms of adaptation to nitrosative stress in Bacillus subtilis. J Bacteriol 189:3063–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bates JN, Baker MT, Guerra R et al (1991) Nitric oxide generation from nitroprusside by vascular tissue: evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol 42:S157–S165

    Article  CAS  PubMed  Google Scholar 

  14. Liu XP, Liu QH, Gupta E et al (2005) Quantitative measurements of NO reaction kinetics with a Clark-type electrode. Nitric Oxide 13:68–77

    Article  CAS  PubMed  Google Scholar 

  15. Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  16. Sakihama Y, Cohen MF, Grace SC et al (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    Article  CAS  PubMed  Google Scholar 

  17. Cohen MF, Mazzola M, Yamasaki H (2006) Nitric oxide research in agriculture: bridging the plant and bacterial realms. In: Rai K, Takabe T (eds) Abiotic stress tolerance in plants. Springer, Dordrecht, pp 71–90

    Chapter  Google Scholar 

  18. Takahashi S, Tamashiro A, Sakihama Y et al (2002) High-susceptibility of photosynthesis to photoinhibition in the tropical plant Ficus microcarpa L. f. cv. Golden Leaves. BMC Plant Biol 2:1–8

    Article  Google Scholar 

  19. Mur LAJ, Mandon J, Cristescu SM et al (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181:509–519

    Article  CAS  PubMed  Google Scholar 

  20. Mur LAJ, Santosa IE, Laarhoven LJJ et al (2005) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conrath U, Amoroso G, Kohle H et al (2004) Non-invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. Plant J 38:1015–1022

    Article  CAS  PubMed  Google Scholar 

  22. Rockel P, Strube F, Rockel A et al (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  23. Hossain KK, Itoh RD, Yoshimura G et al (2010) Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana. Russ J Plant Physiol 57:222–232

    Article  CAS  Google Scholar 

  24. Wink DA, Grisham MB, Mitchell JB et al (1996) Direct and indirect effects of nitric oxide in chemical reactions relevant to biology. Methods Enzymol 268:12–31

    Article  CAS  PubMed  Google Scholar 

  25. Akaike T, Maeda H (1996) Quantitation of nitric oxide using 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Methods Enzymol 268:211–221

    Article  CAS  PubMed  Google Scholar 

  26. Malinski T, Mesaros S, Tomboulian P (1996) Nitric oxide measurement using electrochemical methods. Methods Enzymol 268:58–69

    Article  CAS  PubMed  Google Scholar 

  27. Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    Article  CAS  PubMed  Google Scholar 

  28. Griess P (1879) Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt. Ueber einige Azoverbindungen. Ber Dtsch Chem Ges 12:426–428

    Article  Google Scholar 

  29. Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. PNAS 82:7738–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vitecek J, Reinohl V, Jones RL (2008) Measuring NO production by plant tissues and suspension cultured cells. Mol Plant 1:270–284

    Article  CAS  PubMed  Google Scholar 

  31. Hunter RA, Storm WL, Coneski PN et al (2013) Inaccuracies of nitric oxide measurement methods in biological media. Anal Chem 85:1957–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  33. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  34. Mallick N, Rai LC, Mohn FH et al (1999) Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum. Chemosphere 39:1601–1610

    Article  CAS  PubMed  Google Scholar 

  35. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  36. Gilmore AM, Yamasaki H (1998) 9-aminoacridine and dibucaine exhibit competitive interactions and complicated inhibitory effects that interfere with measurements of Δ pH and xanthophyll cycle-dependent photosystem II energy dissipation. Photosynth Res 57:159–174

    Article  CAS  Google Scholar 

  37. Gurung S, Cohen MF, Yamasaki H (2014) Azide-dependent nitric oxide emission from the water fern Azolla pinnata. Russ J Plant Physiol 61:543–547

    Article  CAS  Google Scholar 

  38. Gupta KJ, Igamberdiev AU (2013) Recommendations of using at least two different methods for measuring NO. Front Plant Sci 4:1–4

    Article  Google Scholar 

  39. Arita NO, Cohen MF, Tokuda G et al (2007) Fluorometric detection of nitric oxide with diaminofluoresceins (DAFs): applications and limitations for plant NO research. In: Lamattina L, Polacco J (eds) Nitric oxide in plant growth, development and stress physiology. Springer, Würzburg, pp 269–280

    Chapter  Google Scholar 

  40. Az-ma T, Fujii K, Yuge O (1994) Reaction between imidazolineoxil N-oxide (carboxy-PTIO) and nitric oxide released from cultured endothelial cells: quantitative measurement of nitric oxide by ESR spectrometry. Life Sci 54:185–190

    Article  Google Scholar 

  41. Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393

    Article  CAS  Google Scholar 

  42. Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  43. Takahashi S, Nakamura T, Sakamizu M et al (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255

    Article  CAS  PubMed  Google Scholar 

  44. Hossain KK, Nakamura T, Yamasaki H (2011) Effect of nitric oxide on leaf non-photochemical quenching of fluorescence under heat-stress conditions. Russ J Plant Physiol 58:629–633

    Article  CAS  Google Scholar 

  45. Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57:3043–3055

    Article  CAS  PubMed  Google Scholar 

  46. Singh RJ, Hogg N, Joseph J et al (1996) Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271:18596–18603

    Article  CAS  PubMed  Google Scholar 

  47. Planchet E, Gupta KJ, Sonoda M et al (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  CAS  PubMed  Google Scholar 

  48. Ono K, Akaike T, Sawa T et al (2014) Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: Implications of their possible biological activity and utility. Free Radic Biol Med 77:82–94

    Article  CAS  PubMed  Google Scholar 

  49. Gruhlke MCH, Slusarenko AJ (2012) The biology of reactive sulfur species (RSS). Plant Physiol Biochem 59:98–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Due to space limitations we were not able to cite many brilliant works on plant NO research that have applied the methods described in this chapter. Please refer to other chapters for such investigations. We thank Dr. Jon Fukuto for his valuable comments on this chapter. This work was supported by the grants to H.Y. from the Japanese Ministry of Education, Science, Culture and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Yamasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yamasaki, H., Watanabe, N.S., Sakihama, Y., Cohen, M.F. (2016). An Overview of Methods in Plant Nitric Oxide (NO) Research: Why Do We Always Need to Use Multiple Methods?. In: Gupta, K. (eds) Plant Nitric Oxide. Methods in Molecular Biology, vol 1424. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3600-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3600-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3598-7

  • Online ISBN: 978-1-4939-3600-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics