Skip to main content

Innate Immune Receptors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1417))

Abstract

For many years innate immunity was regarded as a relatively nonspecific set of mechanisms serving as a first line of defence to contain infections while the more refined adaptive immune response was developing. The discovery of pattern recognition receptors (PRRs) revolutionised the prevailing view of innate immunity, revealing its intimate connection with adaptive immunity and generation of effector and memory T- and B-cell responses. Among the PRRs, families of Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding domain, leucine-rich repeat-containing protein receptors (NLRs), along with a number of cytosolic DNA sensors and the family of absent in melanoma (AIM)-like receptors (ALRs), have been characterised. NLR sensors have been a particular focus of attention, and some NLRs have emerged as key orchestrators of the inflammatory response through the formation of large multiprotein complexes termed inflammasomes. However, several other functions not related to inflammasomes have also been described for NLRs. This chapter introduces the different families of PRRs, their signalling pathways, cross-regulation and their roles in immunosurveillance. The structure and function of NLRs is also discussed with particular focus on the non-inflammasome NLRs.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cooper EL (2010) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7(1):55–78. doi:10.1016/j.plrev.2009.12.001

    Article  PubMed  Google Scholar 

  2. Metschnikoff E (1884) Ueber eine Sprosspilzkrankheit der Daphnien. Beitrag zur Lehre über den Kampf der Phagocyten gegen Krankheitserreger. Archiv f Pathol Anat 96(2):177–195. doi:10.1007/BF02361555

    Article  Google Scholar 

  3. Wilson JDKE (2007) Sir Frank Macfarlane Burnet 1899–1985. Nat Immunol 8(10):1009. doi:10.1038/ni1007-1009

    Article  CAS  Google Scholar 

  4. Landsteiner K (1933) Die Spezifität des serologischen Reaktionen. Springer, Berlin

    Book  Google Scholar 

  5. Burnet FM (1959) The clonal selection theory of acquired immunity. Vanderbilt University Press, Nashville

    Book  Google Scholar 

  6. Janeway CAJ (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Janeway CAJ (1991) Microbial induction of co-stimulatory activity for CD4 T-cell growth. Int Immunol 3(4):323–332

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Janeway CAJ (1992) Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci U S A 89(9):3845–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. doi:10.1146/annurev.iy.12.040194.005015

    Article  CAS  PubMed  Google Scholar 

  10. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983

    Article  CAS  PubMed  Google Scholar 

  11. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397. doi:10.1038/41131

    Article  CAS  PubMed  Google Scholar 

  12. Schaefer L (2014) Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 289(51):35237–35245. doi:10.1074/jbc.R114.619304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Broz P, Monack DM (2013) Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 13(8):551–565. doi:10.1038/nri3479

    Article  CAS  PubMed  Google Scholar 

  14. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295. doi:10.1126/science.1183021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52(2):269–279

    Article  CAS  PubMed  Google Scholar 

  16. Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351(6325):355–356. doi:10.1038/351355b0

    Article  CAS  PubMed  Google Scholar 

  17. Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77(8):1627–1652

    CAS  PubMed  Google Scholar 

  18. Heguy A, Baldari CT, Macchia G, Telford JL, Melli M (1992) Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila Toll protein are essential for IL-1R signal transduction. J Biol Chem 267(4):2605–2609

    CAS  PubMed  Google Scholar 

  19. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47(6):921–928

    Article  CAS  PubMed  Google Scholar 

  20. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337. doi:10.1093/intimm/dxp017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459. doi:10.3389/fimmu.2014.00459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Botos I, Segal DM, Davies DR (2011) The structural biology of Toll-like receptors. Structure 19(4):447–459. doi:10.1016/j.str.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee BL, Moon JE, Shu JH, Yuan L, Newman ZR, Schekman R, Barton GM (2013) UNC93B1 mediates differential trafficking of endosomal TLRs. Elife 2, e00291. doi:10.7554/eLife.00291

    PubMed  PubMed Central  Google Scholar 

  24. Pifer R, Benson A, Sturge CR, Yarovinsky F (2011) UNC93B1 is essential for TLR11 activation and IL-12-dependent host resistance to Toxoplasma gondii. J Biol Chem 286(5):3307–3314. doi:10.1074/jbc.M110.171025

    Article  CAS  PubMed  Google Scholar 

  25. Jin MS, Lee JO (2008) Structures of the Toll-like receptor family and its ligand complexes. Immunity 29(2):182–191. doi:10.1016/j.immuni.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  26. Omueti KO, Beyer JM, Johnson CM, Lyle EA, Tapping RI (2005) Domain exchange between human Toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination. J Biol Chem 280(44):36616–36625. doi:10.1074/jbc.M504320200

    Article  CAS  PubMed  Google Scholar 

  27. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31(6):873–884. doi:10.1016/j.immuni.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  28. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR (2008) Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320(5874):379–381. doi:10.1126/science.1155406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195. doi:10.1038/nature07830

    Article  CAS  PubMed  Google Scholar 

  30. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. doi:10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  31. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate Toll-like receptors. BMC Genomics 8:124. doi:10.1186/1471-2164-8-124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308(5728):1626–1629. doi:10.1126/science.1109893

    Article  CAS  PubMed  Google Scholar 

  33. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, Hayden MS, Akira S, Sher A, Ghosh S (2013) Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38(1):119–130. doi:10.1016/j.immuni.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  34. Mathur R, Oh H, Zhang D, Park SG, Seo J, Koblansky A, Hayden MS, Ghosh S (2012) A mouse model of Salmonella typhi infection. Cell 151(3):590–602. doi:10.1016/j.cell.2012.08.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303(5663):1522–1526. doi:10.1126/science.1094351

    Article  CAS  PubMed  Google Scholar 

  36. Oldenburg M, Kruger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337(6098):1111–1115. doi:10.1126/science.1220363

    Article  CAS  PubMed  Google Scholar 

  37. Godfroy JI, Roostan M, Moroz YS, Korendovych IV, Yin H (2012) Isolated Toll-like receptor transmembrane domains are capable of oligomerization. PLoS One 7(11), e48875. doi:10.1371/journal.pone.0048875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bowie A, O'Neill LA (2000) The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67(4):508–514

    CAS  PubMed  Google Scholar 

  39. O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13(6):453–460. doi:10.1038/nri3446

    Article  PubMed  CAS  Google Scholar 

  40. Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13(11):460–469. doi:10.1016/j.molmed.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  41. Savitsky D, Tamura T, Yanai H, Taniguchi T (2010) Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 59(4):489–510. doi:10.1007/s00262-009-0804-6

    Article  CAS  PubMed  Google Scholar 

  42. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890. doi:10.1038/nature09121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461. doi:10.3389/fimmu.2014.00461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2(3):a000158. doi:10.1101/cshperspect.a000158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844):346–351. doi:10.1038/35085597

    Article  CAS  PubMed  Google Scholar 

  46. Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN (2002) Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J 21(18):4831–4840

    Article  CAS  PubMed  Google Scholar 

  47. Banerjee A, Gugasyan R, McMahon M, Gerondakis S (2006) Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proc Natl Acad Sci U S A 103(9):3274–3279. doi:10.1073/pnas.0511113103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF, Akira S (2000) Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 164(2):554–557

    Article  CAS  PubMed  Google Scholar 

  49. Schnare M, Holt AC, Takeda K, Akira S, Medzhitov R (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol 10(18):1139–1142

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832):1099–1103. doi:10.1038/35074106

    Article  CAS  PubMed  Google Scholar 

  51. Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166(9):5688–5694

    Article  CAS  PubMed  Google Scholar 

  52. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9(1):143–150

    Article  CAS  PubMed  Google Scholar 

  53. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10(2):89–102. doi:10.1038/nri2691

    Article  CAS  PubMed  Google Scholar 

  54. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738. doi:10.1038/35099560

    Article  CAS  PubMed  Google Scholar 

  55. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11(1):115–122

    Article  CAS  PubMed  Google Scholar 

  56. Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K, Akira S (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167(10):5887–5894

    Article  CAS  PubMed  Google Scholar 

  57. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4(2):161–167. doi:10.1038/ni886

    Article  CAS  PubMed  Google Scholar 

  58. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301(5633):640–643. doi:10.1126/science.1087262

    Article  CAS  PubMed  Google Scholar 

  59. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002) Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169(12):6668–6672

    Article  CAS  PubMed  Google Scholar 

  60. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32. doi:10.1016/j.smim.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  61. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7(10):1074–1081. doi:10.1038/ni1382

    Article  CAS  PubMed  Google Scholar 

  62. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434(7034):772–777. doi:10.1038/nature03464

    Article  CAS  PubMed  Google Scholar 

  63. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B (2008) Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 9(10):1157–1164. doi:10.1038/ni.1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5(10):1061–1068. doi:10.1038/ni1118

    Article  CAS  PubMed  Google Scholar 

  65. Shinohara ML, Lu L, Bu J, Werneck MB, Kobayashi KS, Glimcher LH, Cantor H (2006) Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol 7(5):498–506. doi:10.1038/ni1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T (2005) Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434(7036):1035–1040. doi:10.1038/nature03547

    Article  CAS  PubMed  Google Scholar 

  67. Tsujimura H, Tamura T, Kong HJ, Nishiyama A, Ishii KJ, Klinman DM, Ozato K (2004) Toll-like receptor 9 signaling activates NF-kappaB through IFN regulatory factor-8/IFN consensus sequence binding protein in dendritic cells. J Immunol 172(11):6820–6827

    Article  CAS  PubMed  Google Scholar 

  68. Tailor P, Tamura T, Kong HJ, Kubota T, Kubota M, Borghi P, Gabriele L, Ozato K (2007) The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27(2):228–239. doi:10.1016/j.immuni.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW, Taniguchi T (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434(7030):243–249. doi:10.1038/nature03308

    Article  CAS  PubMed  Google Scholar 

  70. Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K (2006) Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A 103(41):15136–15141. doi:10.1073/pnas.0607181103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sancho D, Reis e Sousa C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529. doi:10.1146/annurev-immunol-031210-101352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Drummond RA, Brown GD (2013) Signalling C-type lectins in antimicrobial immunity. PLoS Pathog 9(7), e1003417. doi:10.1371/journal.ppat.1003417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217. doi:10.1111/j.1742-4658.2005.05031.x

    Article  CAS  PubMed  Google Scholar 

  74. Hoving JC, Wilson GJ, Brown GD (2014) Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol 16(2):185–194. doi:10.1111/cmi.12249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Iborra S, Sancho D (2015) Signalling versatility following self and non-self sensing by myeloid C-type lectin receptors. Immunobiology 220(2):175–184. doi:10.1016/j.imbio.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  76. Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9(7):465–479. doi:10.1038/nri2569

    Article  CAS  PubMed  Google Scholar 

  77. Dambuza IM, Brown GD (2015) C-type lectins in immunity: recent developments. Curr Opin Immunol 32C:21–27. doi:10.1016/j.coi.2014.12.002

    Article  CAS  Google Scholar 

  78. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, Geijtenbeek TB (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol 13(3):246–254. doi:10.1038/ni.2222

    Article  CAS  PubMed  Google Scholar 

  79. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5(5):487–497. doi:10.1016/j.chom.2009.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245):433–436. doi:10.1038/nature07965

    Article  CAS  PubMed  Google Scholar 

  81. del Fresno C, Soulat D, Roth S, Blazek K, Udalova I, Sancho D, Ruland J, Ardavin C (2013) Interferon-beta production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 38(6):1176–1186. doi:10.1016/j.immuni.2013.05.010

    Article  PubMed  CAS  Google Scholar 

  82. Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, Hanke K, Gross O, Ruland J, Kaufmann SH (2010) The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med 207(4):777–792. doi:10.1084/jem.20090067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zamze S, Martinez-Pomares L, Jones H, Taylor PR, Stillion RJ, Gordon S, Wong SY (2002) Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 277(44):41613–41623. doi:10.1074/jbc.M207057200

    Article  CAS  PubMed  Google Scholar 

  84. Astarie-Dequeker C, N’Diaye EN, Le Cabec V, Rittig MG, Prandi J, Maridonneau-Parini I (1999) The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 67(2):469–477

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schulert GS, Allen LA (2006) Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J Leukoc Biol 80(3):563–571. doi:10.1189/jlb.0306219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang SS, Park CG, Zhang P, Bartra SS, Plano GV, Klena JD, Skurnik M, Hinnebusch BJ, Chen T (2008) Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem 283(46):31511–31521. doi:10.1074/jbc.M804646200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Geijtenbeek TB, van Kooyk Y (2003) DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276:31–54

    CAS  PubMed  Google Scholar 

  88. Hillaire ML, Nieuwkoop NJ, Boon AC, de Mutsert G, Vogelzang-van Trierum SE, Fouchier RA, Osterhaus AD, Rimmelzwaan GF (2013) Binding of DC-SIGN to the hemagglutinin of influenza A viruses supports virus replication in DC-SIGN expressing cells. PLoS One 8(2), e56164. doi:10.1371/journal.pone.0056164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Iborra S, Izquierdo HM, Martínez-López M, Blanco-Menéndez N, Reis e Sousa C, Sancho D (2012) The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 122(5):1628–1643. doi:10.1172/JCI60660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S, Rogers NC, Schulz O, Sancho D, Reis e Sousa C (2012) The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest 122(5):1615–1627. doi:10.1172/JCI60644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van Die I, van Vliet SJ, Nyame AK, Cummings RD, Bank CM, Appelmelk B, Geijtenbeek TB, van Kooyk Y (2003) The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology 13(6):471–478. doi:10.1093/glycob/cwg052

    Article  PubMed  CAS  Google Scholar 

  92. Ritter M, Gross O, Kays S, Ruland J, Nimmerjahn F, Saijo S, Tschopp J, Layland LE, Prazeres da Costa C (2010) Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci U S A 107(47):20459–20464. doi:10.1073/pnas.1010337107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Osorio F, Reis e Sousa C (2011) Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34(5):651–664. doi:10.1016/j.immuni.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  94. Goodridge HS, Shimada T, Wolf AJ, Hsu YM, Becker CA, Lin X, Underhill DM (2009) Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J Immunol 182(2):1146–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SC, Geijtenbeek TB (2009) Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 10(2):203–213. doi:10.1038/ni.1692

    Article  CAS  PubMed  Google Scholar 

  96. Gringhuis SI, Wevers BA, Kaptein TM, van Capel TM, Theelen B, Boekhout T, de Jong EC, Geijtenbeek TB (2011) Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog 7(1), e1001259. doi:10.1371/journal.ppat.1001259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leibundgut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8(6):630–638. doi:10.1038/ni1460

    Article  CAS  PubMed  Google Scholar 

  98. Leibundgut-Landmann S, Osorio F, Brown GD, Reis e Sousa C (2008) Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood 112(13):4971–4980. doi:10.1182/blood-2008-05-158469

    Article  CAS  PubMed  Google Scholar 

  99. Osorio F, LeibundGut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis e Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38(12):3274–3281. doi:10.1002/eji.200838950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goodridge HS, Simmons RM, Underhill DM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178(5):3107–3115

    Article  CAS  PubMed  Google Scholar 

  101. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, Kimberly RP, Underhill D, Cruz PD Jr, Ariizumi K (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281(50):38854–38866. doi:10.1074/jbc.M606542200

    Article  CAS  PubMed  Google Scholar 

  102. Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26(5):605–616. doi:10.1016/j.immuni.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  103. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175(5):2851–2858

    Article  CAS  PubMed  Google Scholar 

  104. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737. doi:10.1038/ni1087

    Article  CAS  PubMed  Google Scholar 

  105. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692. doi:10.1016/j.immuni.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Szabo A, Magyarics Z, Pazmandi K, Gopcsa L, Rajnavolgyi E, Bacsi A (2014) TLR ligands upregulate RIG-I expression in human plasmacytoid dendritic cells in a type I IFN-independent manner. Immunol Cell Biol 92(8):671–678. doi:10.1038/icb.2014.38

    Article  CAS  PubMed  Google Scholar 

  107. Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488. doi:10.1146/annurev-immunol-032713-120156

    Article  CAS  PubMed  Google Scholar 

  108. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997. doi:10.1126/science.1132505

    Article  PubMed  Google Scholar 

  109. Baum A, Sachidanandam R, Garcia-Sastre A (2010) Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci U S A 107(37):16303–16308. doi:10.1073/pnas.1005077107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591. doi:10.1016/j.cell.2009.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105. doi:10.1038/nature04734

    Article  CAS  PubMed  Google Scholar 

  112. Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M, Walz T, Hur S (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A 108(52):21010–21015. doi:10.1073/pnas.1113651108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682. doi:10.1016/j.cell.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  114. Sun Q, Sun L, Liu HH, Chen X, Seth RB, Forman J, Chen ZJ (2006) The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24(5):633–642. doi:10.1016/j.immuni.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  115. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146(3):448–461. doi:10.1016/j.cell.2011.06.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220. doi:10.1146/annurev.immunol.17.1.189

    Article  CAS  PubMed  Google Scholar 

  117. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174(8):4465–4469

    Article  CAS  PubMed  Google Scholar 

  118. Kersse K, Bertrand MJ, Lamkanfi M, Vandenabeele P (2011) NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 22(5–6):257–276. doi:10.1016/j.cytogfr.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  119. Chen G, Shaw MH, Kim YG, Nunez G (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365–398. doi:10.1146/annurev.pathol.4.110807.092239

    Article  CAS  PubMed  Google Scholar 

  120. Bryant CE, Monie TP (2012) Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biol 2(4):120015. doi:10.1098/rsob.120015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Yuen B, Bayes JM, Degnan SM (2014) The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol 31(1):106–120. doi:10.1093/molbev/mst174

    Article  CAS  PubMed  Google Scholar 

  122. Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC, Reith W, Schreiber S, Steimle V, Ward PA (2008) The NLR gene family: a standard nomenclature. Immunity 28(3):285–287. doi:10.1016/j.immuni.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Barbe F, Douglas T, Saleh M (2014) Advances in Nod-like receptors (NLR) biology. Cytokine Growth Factor Rev 25(6):681–697. doi:10.1016/j.cytogfr.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  124. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587. doi:10.1126/science.1084677

    Article  CAS  PubMed  Google Scholar 

  125. Tanabe T, Chamaillard M, Ogura Y, Zhu L, Qiu S, Masumoto J, Ghosh P, Moran A, Predergast MM, Tromp G, Williams CJ, Inohara N, Nunez G (2004) Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 23(7):1587–1597. doi:10.1038/sj.emboj.7600175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. doi:10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  127. Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191(8):3986–3989. doi:10.4049/jimmunol.1301549

    Article  CAS  PubMed  Google Scholar 

  128. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 110(35):14408–14413. doi:10.1073/pnas.1306376110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232. doi:10.1038/nature04515

    Article  CAS  PubMed  Google Scholar 

  130. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM, Mori A, Moran B, Fitzgerald KA, Tschopp J, Petrilli V, Andrew PW, Kadioglu A, Lavelle EC (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6(11), e1001191. doi:10.1371/journal.ppat.1001191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241. doi:10.1038/nature04516

    Article  CAS  PubMed  Google Scholar 

  132. Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, Ting JP (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104(19):8041–8046. doi:10.1073/pnas.0611496104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ye Z, Lich JD, Moore CB, Duncan JA, Williams KL, Ting JP (2008) ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 28(5):1841–1850. doi:10.1128/MCB.01468-07

    Article  CAS  PubMed  Google Scholar 

  134. Zurek B, Proell M, Wagner RN, Schwarzenbacher R, Kufer TA (2012) Mutational analysis of human NOD1 and NOD2 NACHT domains reveals different modes of activation. Innate Immun 18(1):100–111. doi:10.1177/1753425910394002

    Article  CAS  PubMed  Google Scholar 

  135. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269(21):15195–15203

    CAS  PubMed  Google Scholar 

  136. Schorn C, Frey B, Lauber K, Janko C, Strysio M, Keppeler H, Gaipl US, Voll RE, Springer E, Munoz LE, Schett G, Herrmann M (2011) Sodium overload and water influx activate the NALP3 inflammasome. J Biol Chem 286(1):35–41. doi:10.1074/jbc.M110.139048

    Article  CAS  PubMed  Google Scholar 

  137. Arlehamn CS, Petrilli V, Gross O, Tschopp J, Evans TJ (2010) The role of potassium in inflammasome activation by bacteria. J Biol Chem 285(14):10508–10518. doi:10.1074/jbc.M109.067298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. doi:10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  139. Steimle V, Otten LA, Zufferey M, Mach B (1993) Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75(1):135–146

    Article  CAS  PubMed  Google Scholar 

  140. Nagarajan UM, Bushey A, Boss JM (2002) Modulation of gene expression by the MHC class II transactivator. J Immunol 169(9):5078–5088

    Article  PubMed  Google Scholar 

  141. Mori-Aoki A, Pietrarelli M, Nakazato M, Caturegli P, Kohn LD, Suzuki K (2000) Class II transactivator suppresses transcription of thyroid-specific genes. Biochem Biophys Res Commun 278(1):58–62. doi:10.1006/bbrc.2000.3769

    Article  CAS  PubMed  Google Scholar 

  142. Meissner TB, Li A, Kobayashi KS (2012) NLRC5: a newly discovered MHC class I transactivator (CITA). Microbes Infect 14(6):477–484. doi:10.1016/j.micinf.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  143. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7):702–707. doi:10.1038/ni945

    Article  CAS  PubMed  Google Scholar 

  144. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872. doi:10.1074/jbc.C200651200

    Article  CAS  PubMed  Google Scholar 

  145. Coulombe F, Divangahi M, Veyrier F, de Leseleuc L, Gleason JL, Yang Y, Kelliher MA, Pandey AK, Sassetti CM, Reed MB, Behr MA (2009) Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med 206(8):1709–1716. doi:10.1084/jem.20081779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5(11):1166–1174. doi:10.1038/ni1131

    Article  CAS  PubMed  Google Scholar 

  147. Travassos LH, Carneiro LA, Girardin SE, Boneca IG, Lemos R, Bozza MT, Domingues RC, Coyle AJ, Bertin J, Philpott DJ, Plotkowski MC (2005) Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J Biol Chem 280(44):36714–36718. doi:10.1074/jbc.M501649200

    Article  CAS  PubMed  Google Scholar 

  148. Girardin SE, Tournebize R, Mavris M, Page AL, Li X, Stark GR, Bertin J, DiStefano PS, Yaniv M, Sansonetti PJ, Philpott DJ (2001) CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep 2(8):736–742. doi:10.1093/embo-reports/kve155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Opitz B, Puschel A, Beermann W, Hocke AC, Forster S, Schmeck B, van Laak V, Chakraborty T, Suttorp N, Hippenstiel S (2006) Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176(1):484–490

    Article  CAS  PubMed  Google Scholar 

  150. Lysenko ES, Clarke TB, Shchepetov M, Ratner AJ, Roper DI, Dowson CG, Weiser JN (2007) Nod1 signaling overcomes resistance of S. pneumoniae to opsonophagocytic killing. PLoS Pathog 3(8), e118. doi:10.1371/journal.ppat.0030118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Ratner AJ, Aguilar JL, Shchepetov M, Lysenko ES, Weiser JN (2007) Nod1 mediates cytoplasmic sensing of combinations of extracellular bacteria. Cell Microbiol 9(5):1343–1351. doi:10.1111/j.1462-5822.2006.00878.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Silva GK, Gutierrez FR, Guedes PM, Horta CV, Cunha LD, Mineo TW, Santiago-Silva J, Kobayashi KS, Flavell RA, Silva JS, Zamboni DS (2010) Cutting edge: nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection. J Immunol 184(3):1148–1152. doi:10.4049/jimmunol.0902254

    Article  CAS  PubMed  Google Scholar 

  153. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710):731–734. doi:10.1126/science.1104911

    Article  CAS  PubMed  Google Scholar 

  154. Shaw MH, Reimer T, Sanchez-Valdepenas C, Warner N, Kim YG, Fresno M, Nunez G (2009) T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol 10(12):1267–1274. doi:10.1038/ni.1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, Xiang Y, Bose S (2009) Activation of innate immune antiviral responses by Nod2. Nat Immunol 10(10):1073–1080. doi:10.1038/ni.1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Watanabe T, Kitani A, Murray PJ, Strober W (2004) NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5(8):800–808. doi:10.1038/ni1092

    Article  CAS  PubMed  Google Scholar 

  157. Tada H, Aiba S, Shibata K, Ohteki T, Takada H (2005) Synergistic effect of Nod1 and Nod2 agonists with Toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun 73(12):7967–7976. doi:10.1128/IAI.73.12.7967-7976.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276(7):4812–4818. doi:10.1074/jbc.M008072200

    Article  CAS  PubMed  Google Scholar 

  159. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011. doi:10.1074/jbc.M511044200

    Article  CAS  PubMed  Google Scholar 

  160. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124(4):993–1000. doi:10.1053/gast.2003.50153

    Article  CAS  PubMed  Google Scholar 

  161. Uehara A, Fujimoto Y, Fukase K, Takada H (2007) Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 44(12):3100–3111. doi:10.1016/j.molimm.2007.02.007

    Article  CAS  PubMed  Google Scholar 

  162. Opitz B, Forster S, Hocke AC, Maass M, Schmeck B, Hippenstiel S, Suttorp N, Krull M (2005) Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ Res 96(3):319–326. doi:10.1161/01.RES.0000155721.83594.2c

    Article  CAS  PubMed  Google Scholar 

  163. Rosenstiel P, Fantini M, Brautigam K, Kuhbacher T, Waetzig GH, Seegert D, Schreiber S (2003) TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124(4):1001–1009. doi:10.1053/gast.2003.50157

    Article  CAS  PubMed  Google Scholar 

  164. Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, Nunez G (2008) The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 28(2):246–257. doi:10.1016/j.immuni.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  165. Pudla M, Kananurak A, Limposuwan K, Sirisinha S, Utaisincharoen P (2011) Nucleotide-binding oligomerization domain-containing protein 2 regulates suppressor of cytokine signaling 3 expression in Burkholderia pseudomallei-infected mouse macrophage cell line RAW 264.7. Innate Immun 17(6):532–540. doi:10.1177/1753425910385484

    Article  CAS  PubMed  Google Scholar 

  166. Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK (2005) Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-kappa B activation in muramyl dipeptide recognition. J Cell Biol 170(1):21–26. doi:10.1083/jcb.200502153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nunez G, Inohara N (2008) A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 27(2):373–383. doi:10.1038/sj.emboj.7601962

    Article  CAS  PubMed  Google Scholar 

  168. Watanabe T, Asano N, Fichtner-Feigl S, Gorelick PL, Tsuji Y, Matsumoto Y, Chiba T, Fuss IJ, Kitani A, Strober W (2010) NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest 120(5):1645–1662. doi:10.1172/JCI39481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hitotsumatsu O, Ahmad RC, Tavares R, Wang M, Philpott D, Turer EE, Lee BL, Shiffin N, Advincula R, Malynn BA, Werts C, Ma A (2008) The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28(3):381–390. doi:10.1016/j.immuni.2008.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. LeBlanc PM, Yeretssian G, Rutherford N, Doiron K, Nadiri A, Zhu L, Green DR, Gruenheid S, Saleh M (2008) Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3(3):146–157. doi:10.1016/j.chom.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  171. Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA, Collins C, Viala J, Ferrero RL, Girardin SE, Philpott DJ (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26(4):445–459. doi:10.1016/j.immuni.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  172. Pavot V, Rochereau N, Resseguier J, Gutjahr A, Genin C, Tiraby G, Perouzel E, Lioux T, Vernejoul F, Verrier B, Paul S (2014) Cutting edge: new chimeric NOD2/TLR2 adjuvant drastically increases vaccine immunogenicity. J Immunol 193(12):5781–5785. doi:10.4049/jimmunol.1402184

    Article  CAS  PubMed  Google Scholar 

  173. Conti BJ, Davis BK, Zhang J, O’Connor W Jr, Williams KL, Ting JP (2005) CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J Biol Chem 280(18):18375–18385. doi:10.1074/jbc.M413169200

    Article  CAS  PubMed  Google Scholar 

  174. Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, Davis BK, Allen IC, Holl EK, Ye Z, Rahman AH, Conti BJ, Eitas TK, Koller BH, Ting JP (2012) The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol 13(9):823–831. doi:10.1038/ni.2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang L, Mo J, Swanson KV, Wen H, Petrucelli A, Gregory SM, Zhang Z, Schneider M, Jiang Y, Fitzgerald KA, Ouyang S, Liu ZJ, Damania B, Shu HB, Duncan JA, Ting JP (2014) NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 40(3):329–341. doi:10.1016/j.immuni.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Neerincx A, Lautz K, Menning M, Kremmer E, Zigrino P, Hosel M, Buning H, Schwarzenbacher R, Kufer TA (2010) A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. J Biol Chem 285(34):26223–26232. doi:10.1074/jbc.M110.109736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, Iliopoulos D, van den Elsen PJ, Kobayashi KS (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107(31):13794–13799. doi:10.1073/pnas.1008684107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF (2010) NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141(3):483–496. doi:10.1016/j.cell.2010.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kumar H, Pandey S, Zou J, Kumagai Y, Takahashi K, Akira S, Kawai T (2011) NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J Immunol 186(2):994–1000. doi:10.4049/jimmunol.1002094

    Article  CAS  PubMed  Google Scholar 

  180. Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, Ranjan P, Monroe KM, Pickles RJ, Sambhara S, Ting JP (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 34(6):854–865. doi:10.1016/j.immuni.2011.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rebsamen M, Vazquez J, Tardivel A, Guarda G, Curran J, Tschopp J (2011) NLRX1/NOD5 deficiency does not affect MAVS signalling. Cell Death Differ 18(8):1387. doi:10.1038/cdd.2011.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Soares F, Tattoli I, Wortzman ME, Arnoult D, Philpott DJ, Girardin SE (2013) NLRX1 does not inhibit MAVS-dependent antiviral signalling. Innate Immun 19(4):438–448. doi:10.1177/1753425912467383

    Article  PubMed  CAS  Google Scholar 

  183. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, Yang X, Hong J, Songyang Z, Chen ZJ, Wang RF (2011) NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity 34(6):843–853. doi:10.1016/j.immuni.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513. doi:10.1038/nature07710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518. doi:10.1038/nature07725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323(5917):1057–1060. doi:10.1126/science.1169841

    Article  CAS  PubMed  Google Scholar 

  187. Hansen JD, Vojtech LN, Laing KJ (2011) Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol 35(9):886–897. doi:10.1016/j.dci.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  188. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678. doi:10.1038/nature07317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ouyang S, Song X, Wang Y, Ru H, Shaw N, Jiang Y, Niu F, Zhu Y, Qiu W, Parvatiyar K, Li Y, Zhang R, Cheng G, Liu ZJ (2012) Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36(6):1073–1086. doi:10.1016/j.immuni.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  190. Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5(214), ra20. doi:10.1126/scisignal.2002521

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chen H, Sun H, You F, Sun W, Zhou X, Chen L, Yang J, Wang Y, Tang H, Guan Y, Xia W, Gu J, Ishikawa H, Gutman D, Barber G, Qin Z, Jiang Z (2011) Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 147(2):436–446. doi:10.1016/j.cell.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  192. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. doi:10.1126/science.1232458

    Article  CAS  PubMed  Google Scholar 

  193. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235. doi:10.1016/j.molcel.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  194. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906. doi:10.1126/science.1240933

    Article  CAS  PubMed  Google Scholar 

  195. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341(6152):1390–1394. doi:10.1126/science.1244040

    Article  CAS  PubMed  Google Scholar 

  196. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, Garcia-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505(7485):691–695. doi:10.1038/nature12862

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed C. Lavelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Muñoz-Wolf, N., Lavelle, E.C. (2016). Innate Immune Receptors. In: Di Virgilio, F., Pelegrín, P. (eds) NLR Proteins. Methods in Molecular Biology, vol 1417. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3566-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3566-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3564-2

  • Online ISBN: 978-1-4939-3566-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics