Skip to main content

Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Microtubule dynamic instability, the process by which individual microtubules switch between phases of growth and shrinkage, is essential for establishing the architecture of cellular microtubule structures, such as the mitotic spindle. This switching process is regulated by a complex network of microtubule-associated proteins (MAPs), which modulate different aspects of microtubule dynamic behavior. To elucidate the effects of MAPs and their molecular mechanisms of action, in vitro reconstitution approaches with purified components are used. Here, I present methods for measuring individual and combined effects of MAPs on microtubule dynamics, using purified protein components and total-internal-reflection fluorescence (TIRF) microscopy. Particular focus is given to the experimental design, proper parameterization, and data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mitchison TJ, Kirschner MW (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  2. Lyle K, Kumar P, Wittmann T (2009) SnapShot: microtubule regulators I. Cell 136:380–380.e1. doi:10.1016/j.cell.2009.01.010

    PubMed  PubMed Central  Google Scholar 

  3. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322. doi:10.1038/nrm2369

    Article  CAS  PubMed  Google Scholar 

  4. Howard J, Hyman AA (2007) Microtubule polymerases and depolymerases. Curr Opin Cell Biol 19:31–35. doi:10.1016/j.ceb.2006.12.009

    Article  CAS  PubMed  Google Scholar 

  5. Walker RA, O’Brien ET, Pryer NK et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  CAS  PubMed  Google Scholar 

  6. Zanic M, Widlund PO, Hyman AA, Howard J (2013) Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat Cell Biol 15(6):688–693. doi:10.1038/ncb2744

    Article  CAS  PubMed  Google Scholar 

  7. Wieczorek M, Chaaban S, Brouhard GJ (2013) Macromolecular crowding pushes catalyzed microtubule growth to near the theoretical limit. Cell Mol Bioeng. doi:10.1007/s12195-013-0292-9

    Google Scholar 

  8. Srayko M, Kaya A, Stamford J, Hyman AA (2005) Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev Cell 9:223–236. doi:10.1016/j.devcel.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  9. Gardner MK, Zanic M, Gell C et al (2011) Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 147:1092–1103. doi:10.1016/j.cell.2011.10.037

    Article  CAS  PubMed  Google Scholar 

  10. Kerssemakers JWJ, Munteanu EL, Laan L et al (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712. doi:10.1038/nature04928

    Article  CAS  PubMed  Google Scholar 

  11. Schek H, Gardner MK, Cheng J et al (2007) Microtubule assembly dynamics at the nanoscale. Curr Biol 17:1445–1455. doi:10.1016/j.cub.2007.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gardner MK, Charlebois BD, Jánosi IM et al (2011) Rapid microtubule self-assembly kinetics. Cell 146:582–592. doi:10.1016/j.cell.2011.06.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Howard J, Hyman AA (2009) Growth, fluctuation and switching at microtubule plus ends. Nat Rev Mol Cell Biol 10:569–574. doi:10.1038/nrm2713

    Article  CAS  PubMed  Google Scholar 

  14. Verde F, Dogterom M, Stelzer E et al (1992) Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol 118:1097–1108

    Article  CAS  PubMed  Google Scholar 

  15. Gell C, Bormuth V, Brouhard GJ et al (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245. doi:10.1016/S0091-679X(10)95013-9

    Article  CAS  PubMed  Google Scholar 

  16. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  17. Abràmoff MD, Magalhães PJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  18. Hyman AA, Salser S, Drechsel DN et al (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 3:1155–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashford AJ, Andersen S, Hyman AA (1998) Preparation of tubulin from bovine brain. In: Celis J (ed) Cell biology: a laboratory handbook. Academic Press, New York

    Google Scholar 

  20. Gell C, Friel CT, Borgonovo B et al (2011) Purification of tubulin from porcine brain. Methods Mol Biol 777:15–28. doi:10.1007/978-1-61779-252-6_2

    Article  CAS  PubMed  Google Scholar 

  21. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88. doi:10.1016/s1046-5928(03)00218-3

    Article  CAS  PubMed  Google Scholar 

  22. Hyman AA, Drechsel DN, Kellogg D et al (1991) Preparation of modified tubulins. Meth Enzymol 196:478–485

    Article  CAS  PubMed  Google Scholar 

  23. Widlund PO, Podolski M, Reber SB et al (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23:4393–4401. doi:10.1091/mbc.E12-06-0444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fygenson D, Braun E, Libchaber A (1994) Phase diagram of microtubules. Phys Rev E 50:1579–1588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Anika Rahman for help with the data analysis. I am grateful to Justin Bois, Gary Brouhard, Melissa Gardner, Anneke Hibbel, Jonathon Howard, Elizabeth Lawrence, Chloe Snider, Michal Wieczorek, and especially Marija Podolski for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Zanic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zanic, M. (2016). Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics