Skip to main content

Purification and Fluorescent Labeling of Tubulin from Xenopus laevis Egg Extracts

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

For many years, microtubule research has depended on tubulin purified from cow and pig brains, which may not be ideal for experiments using proteins or extracts from non-brain tissues and cold-blooded organisms. Here, we describe a method to purify functional tubulin from the eggs of the frog, Xenopus laevis. This tubulin has many benefits for the study of microtubules and microtubule based structures assembled in vitro at room temperature. Frog tubulin lacks many of the highly stabilizing posttranslational modifications present in pig brain-derived tubulin, and polymerizes efficiently at room temperature. In addition, fluorescently labeled frog egg tubulin incorporates into meiotic spindles assembled in egg extract more efficiently than brain tubulin, and is thus superior as a probe for Xenopus egg extract experiments. Frog egg tubulin will provide excellent opportunities to identify active nucleation complexes and revisit microtubule polymerization dynamics in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lustig KD, Stukenberg PT, McGarry TJ et al (1997) Small pool expression screening: identification of genes involved in cell cycle control, apoptosis, and early development. Methods Enzymol 283:83–99

    Article  CAS  PubMed  Google Scholar 

  2. Desai A, Murray A, Mitchison TJ, Walczak CE (1999) The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol 61:385–412

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen PA, Groen AC, Loose M et al (2014) Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science 346:244–247. doi:10.1126/science.1256773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groen AC, Ngyuen PA, Field CM et al (2014) Glycogen-supplemented mitotic cytosol for analyzing Xenopus egg microtubule organization. Methods Enzymol 540:417–433. doi:10.1016/B978-0-12-397924-7.00023-6

    Article  CAS  PubMed  Google Scholar 

  5. Song Y, Brady ST (2014) Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol. doi:10.1016/j.tcb.2014.10.004

    PubMed  PubMed Central  Google Scholar 

  6. Podolski M, Mahamdeh M, Howard J (2014) Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency. J Biol Chem 289:28087–28093. doi:10.1074/jbc.M114.584300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88. doi:10.1016/S1046-5928(03)00218-3

    Article  CAS  PubMed  Google Scholar 

  8. Widlund PO, Podolski M, Reber S et al (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23:4393–4401. doi:10.1091/mbc.E12-06-0444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hyman A, Drechsel D, Kellogg D et al (1991) Preparation of modified tubulins. Methods Enzymol 196:478–485

    Article  CAS  PubMed  Google Scholar 

  10. Correia JJ, Wilson L (2013) Microtubules, in vitro. Academic Press, Amsterdam

    Google Scholar 

  11. Cammack R, Atwood T, Campbell P et al (2006) Oxford dictionary of biochemistry and molecular biology, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  12. Parness J, Horwitz SB (1981) Taxol binds to polymerized tubulin in vitro. J Cell Biol 91:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work was funded primarily by NIH grant GM23928. I would like to thank Dr. Mary Badon, MD/MBA, for her guidance and contributions to the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Mitchison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Groen, A.C., Mitchison, T.J. (2016). Purification and Fluorescent Labeling of Tubulin from Xenopus laevis Egg Extracts. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics