Skip to main content

Circadian Rhythms in the Fetus and Newborn: Significance of Interactions with Maternal Physiology and the Environment

  • Protocol
Book cover Prenatal and Postnatal Determinants of Development

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

Timing of balanced and precise daily delivery of oxygen, nutrients, hormones, and biophysical cues from mother to fetus is essential for fetal growth and successful transition to extrauterine life. Such timing is provided by an arrangement of biological clocks operating in the mother and fetus. However, adverse intrauterine conditions including effects of altering the photoperiod (chronodisruption) during gestation on fetal growth/development and postnatal physiology may translate into adult disease, in which the role played by fetal circadian system remains unclear. Here we review the development of the circadian system, changes experienced by the maternal circadian system during pregnancy, evidence that chronodisruption during pregnancy has long-term effects on the offspring, and current experimental approaches utilized to investigate these issues. However, we are aware that we are just now obtaining new pieces of information that needs to be broadened and studied searching for a diurnal model more comparable to humans. Physiological and pathophysiological questions related to the mother-fetus pair and neonate in vivo need to be addressed as well as the corresponding consequences in adulthood, with expanded and new techniques: among the latter, effects on the transcriptome, microRNA regulome (miRNome), and proteome of different maternal-fetal, neonatal, and adult tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erren TC, Reiter RJ (2009) Defining chronodisruption. J Pineal Res 46:245–247

    Article  CAS  PubMed  Google Scholar 

  2. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  4. Richter HG, Torres-Farfan C, Rojas-Garcia PP, Campino C, Torrealba F, Seron-Ferre M (2004) The circadian timing system: making sense of day/night gene expression. Biol Res 37:11–28

    Article  CAS  PubMed  Google Scholar 

  5. Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, Okamura H (2005) Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2:297–307

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe T et al (2006) Peripheral clock gene expression in CS mice with bimodal locomotor rhythms. Neurosci Res 54:295–301

    Article  PubMed  Google Scholar 

  7. Fustin JM, Dardente H, Wagner GC, Carter DA, Johnston JD, Lincoln GA, Hazlerigg DG (2009) Egr1 involvement in evening gene regulation by melatonin. FASEB J 23:764–773

    Article  CAS  PubMed  Google Scholar 

  8. Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628

    Article  CAS  PubMed  Google Scholar 

  9. Resuehr HE, Resuehr D, Olcese J (2009) Induction of mPer1 expression by GnRH in pituitary gonadotrope cells involves EGR-1. Mol Cell Endocrinol 311:120–125

    Article  CAS  PubMed  Google Scholar 

  10. Sumova A, Bendova Z, Sladek M, El-Hennamy R, Mateju K, Polidarova L, Sosniyenko S, Illnerova H (2008) Circadian molecular clocks tick along ontogenesis. Physiol Res 57(Suppl 3):S139–S148

    PubMed  Google Scholar 

  11. Jud C, Albrecht U (2006) Circadian rhythms in murine pups develop in absence of a functional maternal circadian clock. J Biol Rhythms 21:149–154

    Article  CAS  PubMed  Google Scholar 

  12. Seron-Ferre M et al (2012) Circadian rhythms in the fetus. Mol Cell Endocrinol 349:68–75

    Article  CAS  PubMed  Google Scholar 

  13. Davis FC, Reppert SM (2001) Development of mammalian circadian rhythms. In: Takahashi JS, Turek FW, Moore RY (eds) Circadian clocks, Handbooks of behavioral neurobiology. Kluwer Academic/Plenum Publishers, New York, NY, pp 247–291

    Google Scholar 

  14. Reppert SM, Schwartz WJ (1984) Functional activity of the suprachiasmatic nuclei in the fetal primate. Neurosci Lett 46:145–149

    Article  CAS  PubMed  Google Scholar 

  15. Reppert SM, Schwartz WJ (1983) Maternal coordination of the fetal biological clock in utero. Science 220:969–971

    Article  CAS  PubMed  Google Scholar 

  16. Davis FC, Gorski RA (1985) Development of hamster circadian rhythms. I. Within-litter synchrony of mother and pup activity rhythms at weaning. Biol Reprod 33:353–362

    Article  CAS  PubMed  Google Scholar 

  17. Novakova M, Sladek M, Sumova A (2010) Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J Biol Rhythms 25:350–360

    Article  PubMed  Google Scholar 

  18. Constandil L, Parraguez VH, Torrealba F, Valenzuela G, Seron-Ferre M (1995) Day-night changes in c-fos expression in the fetal sheep suprachiasmatic nucleus at late gestation. Reprod Fertil Dev 7:411–413

    Article  CAS  PubMed  Google Scholar 

  19. Breen S, Rees S, Walker D (1996) The development of diurnal rhythmicity in fetal suprachiasmatic neurons as demonstrated by fos immunohistochemistry. Neuroscience 74:917–926

    Article  CAS  PubMed  Google Scholar 

  20. Seron-Ferre M, Valenzuela GJ, Torres-Farfan C (2007) Circadian clocks during embryonic and fetal development. Birth Defects Res C Embryo Today 81:204–214

    Article  CAS  PubMed  Google Scholar 

  21. Torrealba F, Parraguez VH, Reyes T, Valenzuela G, Seron-Ferre M (1993) Prenatal development of the retinohypothalamic pathway and the suprachiasmatic nucleus in the sheep. J Comp Neurol 338:304–316

    Article  CAS  PubMed  Google Scholar 

  22. Muller C, Torrealba F (1998) Postnatal development of neuron number and connections in the suprachiasmatic nucleus of the hamster. Brain Res Dev Brain Res 110:203–213

    Article  CAS  PubMed  Google Scholar 

  23. Torres-Farfan C et al (2006) Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology 147: 4618–4626

    Article  CAS  PubMed  Google Scholar 

  24. Bendova Z, Sumova A, Illnerova H (2004) Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus. Brain Res Dev Brain Res 148:105–112

    Article  CAS  PubMed  Google Scholar 

  25. Ko MS et al (2000) Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 127:1737–1749

    PubMed  Google Scholar 

  26. Johnson MH, Lim A, Fernando D, Day ML (2002) Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse. Reprod Biomed Online 4:140–145

    Article  CAS  PubMed  Google Scholar 

  27. Saxena MT, Aton SJ, Hildebolt C, Prior JL, Abraham U, Piwnica-Worms D, Herzog ED (2007) Bioluminescence imaging of period1 gene expression in utero. Mol Imaging 6:68–72

    CAS  PubMed  Google Scholar 

  28. Sladek M, Jindrakova Z, Bendova Z, Sumova A (2007) Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol Regul Integr Comp Physiol 292:R1224–R1229

    Article  CAS  PubMed  Google Scholar 

  29. Torres-Farfan C, Mendez N, Abarzua-Catalan L, Vilches N, Valenzuela GJ, Seron-Ferre M (2011) A Circadian clock entrained by melatonin is ticking in the rat fetal adrenal. Endocrinology 152:1891–1900

    Article  CAS  PubMed  Google Scholar 

  30. Polidarova L, Olejnikova L, Pauslyova L, Sladek M, Sotak M, Pacha J, Sumova A (2014) Development and entrainment of the colonic circadian clock during ontogenesis. Am J Physiol Gastrointest Liver Physiol 306:G346–G356

    Article  CAS  PubMed  Google Scholar 

  31. Vilches N, Spichiger C, Mendez N, Abarzua-Catalan L, Galdames HA, Hazlerigg DG, Richter HG, Torres-Farfan C (2014) Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS One 9:e91313

    Article  PubMed Central  PubMed  Google Scholar 

  32. Meszaros K, Pruess L, Szabo AJ, Gondan M, Ritz E, Schaefer F (2014) Development of the circadian clockwork in the kidney. Kidney Int 86:915

    Article  CAS  PubMed  Google Scholar 

  33. Liggins GC (1994) The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev 6:141–150

    Article  CAS  PubMed  Google Scholar 

  34. Underwood MA, Gilbert WM, Sherman MP (2005) Amniotic fluid: not just fetal urine anymore. J Perinatol 25:341–348

    Article  PubMed  Google Scholar 

  35. Nishide SY, Hashimoto K, Nishio T, Honma K, Honma S (2014) Organ-specific development characterizes circadian clock gene Per2 expression in rats. Am J Physiol Regul Integr Comp Physiol 306:R67–R74

    Article  CAS  PubMed  Google Scholar 

  36. Hiroshige T, Honma K, Watanabe K (1982) Ontogeny of the circadian rhythm of plasma corticosterone in blind infantile rats. J Physiol 325:493–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Deguchi T (1975) Ontogenesis of a biological clock for serotonin:acetyl coenzyme A N-acetyltransferase in pineal gland of rat. Proc Natl Acad Sci U S A 72:2814–2818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Reppert SM, Schwartz WJ (1986) Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J Neurosci 6:2724–2729

    CAS  PubMed  Google Scholar 

  39. Weaver DR, Reppert SM (1989) Periodic feeding of SCN-lesioned pregnant rats entrains the fetal biological clock. Brain Res Dev Brain Res 46:291–296

    Article  CAS  PubMed  Google Scholar 

  40. Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tamura S, Sagara Y (1998) Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res 25:129–134

    Article  CAS  PubMed  Google Scholar 

  41. Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384

    Article  CAS  PubMed  Google Scholar 

  42. Yellon SM, Longo LD (1988) Effect of maternal pinealectomy and reverse photoperiod on the circadian melatonin rhythm in the sheep and fetus during the last trimester of pregnancy. Biol Reprod 39:1093–1099

    Article  CAS  PubMed  Google Scholar 

  43. McMillen IC, Nowak R (1989) Maternal pinealectomy abolishes the diurnal rhythm in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. J Endocrinol 120:459–464

    Article  CAS  PubMed  Google Scholar 

  44. Torres-Farfan C et al (2004) Maternal melatonin selectively inhibits cortisol production in the primate fetal adrenal gland. J Physiol 554:841–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Mendez N et al (2012) Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One 7:e42713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Torres-Farfan C et al (2008) Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. J Physiol 586:4017–4027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bellavia SL, Carpentieri AR, Vaque AM, Macchione AF, Vermouth NT (2006) Pup circadian rhythm entrainment–effect of maternal ganglionectomy or pinealectomy. Physiol Behav 89:342–349

    Article  CAS  PubMed  Google Scholar 

  48. Seron-Ferre M et al (2013) Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms. PLoS One 8:e57710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Galdames HA, Torres-Farfan C, Spichiger C, Mendez N, Abarzua-Catalan L, Alonso-Vazquez P, Richter HG (2014) Impact of gestational chronodisruption on fetal cardiac genomics. J Mol Cell Cardiol 66:1–11

    Article  CAS  PubMed  Google Scholar 

  50. Rivkees SA, Mayes L, Jacobs H, Gross I (2004) Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics 113: 833–839

    Article  PubMed  Google Scholar 

  51. Watanabe S, Akiyama S, Hanita T, Li H, Nakagawa M, Kaneshi Y, Ohta H (2013) Designing artificial environments for preterm infants based on circadian studies on pregnant uterus. Front Endocrinol (Lausanne) 4:113

    Google Scholar 

  52. Vasquez-Ruiz S, Maya-Barrios JA, Torres-Narvaez P, Vega-Martinez BR, Rojas-Granados A, Escobar C, Angeles-Castellanos M (2014) A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum Dev 90:535

    Article  PubMed  Google Scholar 

  53. Cunningham FG, Leveno K, Bloom S, Hauth J, Rouse D, Spong CY (2009) Maternal and fetal anatomy and physiology. In: Fried A, Davis K (eds) Williams obstetrics. McGraw-Hill Professional Publishing, New York, NY, pp 107–136

    Google Scholar 

  54. Brunton PJ, Russell JA (2008) The expectant brain: adapting for motherhood. Nat Rev Neurosci 9:11–25

    Article  CAS  PubMed  Google Scholar 

  55. Schrader JA, Nunez AA, Smale L (2010) Changes in and dorsal to the rat suprachiasmatic nucleus during early pregnancy. Neuroscience 171:513–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Schrader JA, Smale L, Nunez AA (2012) Pregnancy affects FOS rhythms in brain regions regulating sleep/wake state and body temperature in rats. Brain Res 1480:53–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Schrader JA, Nunez AA, Smale L (2011) Site-specific changes in brain extra-SCN oscillators during early pregnancy in the rat. J Biol Rhythms 26:363–367

    Article  PubMed  Google Scholar 

  58. Varcoe TJ, Boden MJ, Voultsios A, Salkeld MD, Rattanatray L, Kennaway DJ (2013) Characterisation of the maternal response to chronic phase shifts during gestation in the rat: implications for fetal metabolic programming. PLoS One 8:e53800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wharfe MD, Mark PJ, Waddell BJ (2011) Circadian variation in placental and hepatic clock genes in rat pregnancy. Endocrinology 152:3552–3560

    Article  CAS  PubMed  Google Scholar 

  60. Tamura H, Nakamura Y, Terron MP, Flores LJ, Manchester LC, Tan DX, Sugino N, Reiter RJ (2008) Melatonin and pregnancy in the human. Reprod Toxicol 25:291–303

    Article  CAS  PubMed  Google Scholar 

  61. de Weerth C, Buitelaar JK (2005) Physiological stress reactivity in human pregnancy – a review. Neurosci Biobehav Rev 29:295–312

    Article  PubMed  Google Scholar 

  62. Brunton PJ, Russell JA (2010) Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol 22:258–271

    Article  CAS  PubMed  Google Scholar 

  63. Schrader JA, Walaszczyk EJ, Smale L (2009) Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus). Physiol Behav 98:547–556

    Article  CAS  PubMed  Google Scholar 

  64. Kittrell EM, Satinoff E (1988) Diurnal rhythms of body temperature, drinking and activity over reproductive cycles. Physiol Behav 42:477–484

    Article  CAS  PubMed  Google Scholar 

  65. Ebisawa T (2007) Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes. J Pharmacol Sci 103:150–154

    Article  CAS  PubMed  Google Scholar 

  66. Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH (2010) Temporal dynamics of mouse hippocampal clock gene expression support memory. Hippocampus 20:377–388

    CAS  PubMed  Google Scholar 

  67. Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J (2013) Circadian clocks and metabolism. Handb Exp Pharmacol (217): 127–155

    Google Scholar 

  68. Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Matsumoto T, Hess DL, Kaushal KM, Valenzuela GJ, Yellon SM, Ducsay CA (1991) Circadian myometrial and endocrine rhythms in the pregnant rhesus macaque: effects of constant light and timed melatonin infusion. Am J Obstet Gynecol 165:1777–1784

    Article  CAS  PubMed  Google Scholar 

  70. Varcoe TJ, Wight N, Voultsios A, Salkeld MD, Kennaway DJ (2011) Chronic phase shifts of the photoperiod throughout pregnancy programs glucose. PLoS One 6:e18504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Osmond C, Barker DJ (2000) Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect 108:545–553

    Article  PubMed Central  PubMed  Google Scholar 

  72. Fowden AL, Giussani DA, Forhead AJ (2006) Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda) 21:29–37

    Article  CAS  Google Scholar 

  73. Nathanielsz PW (2006) Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J 47:73–82

    Article  CAS  PubMed  Google Scholar 

  74. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci (Lond) 114:1–17

    Article  CAS  Google Scholar 

  75. Barker DJ (2006) Adult consequences of fetal growth restriction. Clin Obstet Gynecol 49:270–283

    Article  PubMed  Google Scholar 

  76. Ferreira DS et al (2012) Maternal melatonin programs the daily pattern of energy metabolism in adult offspring. PLoS One 7:e38795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Zhu JL, Hjollund NH, Andersen AM, Olsen J (2004) Shift work, job stress, and late fetal loss: the National Birth Cohort in Denmark. J Occup Environ Med 46:1144–1149

    Article  PubMed  Google Scholar 

  78. Taylor NF, Martin MC, Nathanielsz PW, Seron-Ferre M (1983) The fetus determines circadian oscillation of myometrial electromyographic activity in the pregnant rhesus monkey. Am J Obstet Gynecol 146:557–567

    CAS  PubMed  Google Scholar 

  79. Figueroa JP, Honnebier MB, Jenkins S, Nathanielsz PW (1990) Alteration of 24-hour rhythms in myometrial activity in the chronically catheterized pregnant rhesus monkey after a 6-hour shift in the light-dark cycle. Am J Obstet Gynecol 163:648–654

    Article  CAS  PubMed  Google Scholar 

  80. Jensen EC, Bennet L, Guild SJ, Booth LC, Stewart J, Gunn AJ (2009) The role of the neural sympathetic and parasympathetic systems in diurnal and sleep state-related cardiovascular rhythms in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol 297:R998–R1008

    Article  CAS  PubMed  Google Scholar 

  81. Houdek P, Polidarova L, Novakova M, Mateju K, Kubik S, Sumova A (2015) Melatonin administered during the fetal stage affects circadian clock in the suprachiasmatic nucleus but not in the liver. Dev Neurobiol 75:131

    Article  CAS  PubMed  Google Scholar 

  82. Li C, Yu S, Zhong X, Wu J, Li X (2012) Circadian rhythms of fetal liver transcription persist in the absence of canonical circadian clock gene expression rhythms in vivo. PLoS One 7:e30781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Akiyama S et al (2010) The uterus sustains stable biological clock during pregnancy. Tohoku J Exp Med 221:287–298

    Article  PubMed  Google Scholar 

  84. Ratajczak CK, Herzog ED, Muglia LJ (2010) Clock gene expression in gravid uterus and extra-embryonic tissues during late gestation in the mouse. Reprod Fertil Dev 22:743–750

    Article  CAS  PubMed  Google Scholar 

  85. Ohta H et al (2008) Maternal feeding controls fetal biological clock. PLoS One 3:e2601

    Article  PubMed Central  PubMed  Google Scholar 

  86. Seron-Ferre M, Ducsay CA, Valenzuela GJ (1993) Circadian rhythms during pregnancy. Endocr Rev 14:594–609

    CAS  PubMed  Google Scholar 

  87. Seron-Ferre M, Riffo R, Valenzuela GJ, Germain AM (2001) Twenty-four-hour pattern of cortisol in the human fetus at term. Am J Obstet Gynecol 184:1278–1283

    Article  CAS  PubMed  Google Scholar 

  88. Refinetti R, Lissen GC, Halberg F (2007) Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 38:275–325

    Article  PubMed Central  PubMed  Google Scholar 

  89. Zar J (1974) Circular distributions. In: McElroy W, Swanson C (eds) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJ, pp 310–328

    Google Scholar 

Download references

Acknowledgments

ANILLO ACT-1116; FONDECYT 1110220 and 1120938 (Chile).

We thank Monica Prizant for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Serón-Ferré Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Serón-Ferré, M., Richter, H.G., Valenzuela, G.J., Torres-Farfan, C. (2016). Circadian Rhythms in the Fetus and Newborn: Significance of Interactions with Maternal Physiology and the Environment. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics