Skip to main content

Advanced EEG and MRI Measurements to Study the Functional Development of the Newborn Brain

  • Protocol

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

In this chapter we review the methodological progress that has recently been made for studying brain development in infants using noninvasive techniques. In particular, we focus on methodological platforms based on electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Key aspects of experimental setup, data acquisition, data preprocessing, and analysis are described and discussed with emphasis on recordings performed on the infant brain. The measurement and estimation of large-scale brain network connectivity using fMRI and EEG has become an important tool to study brain development. To this end, we describe central findings regarding the large-scale brain network architecture of the infant brain. Further, data analysis strategies pertaining to the investigation brain connectivity are described together with a discussion of their advantages and pitfalls.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123:1067–1087

    Article  CAS  PubMed  Google Scholar 

  2. Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R (2007) Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex 17:1582–1594

    Article  PubMed  Google Scholar 

  3. Vanhatalo S, Lauronen L (2006) Neonatal SEP: back to bedside with basic science. Semin Fetal Neonatal Med 11:464–470

    Article  PubMed  Google Scholar 

  4. Stjerna S et al. (2012) Preterm EEG: a multimodal neurophysiological protocol. J Vis Exp (60): e3774, http://dx.doi.org/10.3791/3774

  5. Hanganu-Opatz IL (2010) Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res Rev 64:160–176

    Article  PubMed  Google Scholar 

  6. Colonnese M, Khazipov R (2012) Spontaneous activity in developing sensory circuits: implications for resting state fMRI. Neuroimage 62:2212–2221

    Article  PubMed  Google Scholar 

  7. Kilb W, Kirischuk S, Luhmann HJ (2011) Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci 34:1677–1686

    Article  PubMed  Google Scholar 

  8. Odabaee M et al (2013) Spatial patterning of the neonatal EEG suggests a need for a high number of electrodes. Neuroimage 68:229–235

    Article  PubMed  Google Scholar 

  9. Grieve PG et al (2004) Quantitative analysis of spatial sampling error in the infant and adult electroencephalogram. Neuroimage 21:1260–1274

    Article  PubMed  Google Scholar 

  10. Vanhatalo S, Palva M, Andersson S, Rivera C, Voipio J, Kaila K (2005) Slow endogenous activity transients and developmental expression of K-Cl cotransporter 2 in the immature human cortex. Eur J Neurosci 22:2799–2804

    Article  PubMed  Google Scholar 

  11. Welch MG et al (2014) Electroencephalographic activity of preterm infants is increased by Family Nurture Intervention: a randomized controlled trial in the NICU. Clin Neurophysiol 125:675. doi:10.1016/j.clinph.2013.08.021

    Article  PubMed  Google Scholar 

  12. Vanhatalo S et al (2008) High-fidelity recording of brain activity in the extremely preterm babies: feasibility study in the incubator. Clin Neurophysiol 119:439–445

    Article  PubMed  Google Scholar 

  13. Vanhatalo S et al (2005) Full-band EEG (FbEEG): an emerging standard in electroencephalography. Clin Neurophysiol 116:1–8

    Article  PubMed  Google Scholar 

  14. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  15. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  16. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. NEMO (2011) An educational multimedia package directed and authored by Vanhatalo S. http://www.nemo-europe.com/en/educational-tools.php

  18. Räsänen O, Metsäranta M, Vanhatalo S (2013) Development of a novel robust measure for interhemispheric synchrony in the neonatal EEG: Activation Synchrony Index (ASI). Neuroimage 69:256–266

    Article  PubMed  Google Scholar 

  19. Palva JM et al (2010) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci 107:7580–7585. doi:10.1073/pnas.0913113107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pasquale F, Penna SD, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A 107:6040–6045

    Article  PubMed Central  PubMed  Google Scholar 

  21. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci U S A 108:16783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kabdebon C, Leroy F, Simmonet H, Perrot M, Dubois J, Dehaene-Lambertz G (2014) Anatomical correlations of the international 10-20 sensor placement system in infants. Neuroimage 99:342–356

    Article  CAS  PubMed  Google Scholar 

  23. Palmu K, Kirjavainen T, Salokivi T, Palva M, Vanhatalo S (2013) Sleep wake cycling in early preterm infants, and its potential monitoring using a novel automated measure from the EEG monitoring. Clin Neurophysiol 124:1807–1814

    Article  PubMed  Google Scholar 

  24. Schoffelen J-M, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30:1857–1865. doi:10.1002/hbm.20745

    Article  PubMed  Google Scholar 

  25. Odabaee M, Tokariev A, Layeghy S, Mesbah M, Colditz PB, Ramon C, Vanhatalo S (2014) Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. Neuroimage 96C:73–80

    Article  Google Scholar 

  26. De Vos M, Deburchgraeve W, Cherian PJ, Matic V, Swarte RM, Govaert P, Visser GH, Van Huffel S (2011) Automated artifact removal as preprocessing refines neonatal seizure detection. Clin Neurophysiol 122:2345–2354

    Article  PubMed  Google Scholar 

  27. Nordell A, Lundh M, Horsch S, Hallberg B, Åden U, Nordell B, Blennow M (2009) The acoustic hood: a patient-independent device improving acoustic noise protection during neonatal magnetic resonance imaging. Acta Pediatrica 98:1278–1283

    Article  Google Scholar 

  28. Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Nair VA, Mayerand ME, Prabhakaran V (2013) The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83:550–558

    Article  PubMed Central  PubMed  Google Scholar 

  29. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Åden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci U S A 104:15531–15536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE, Counsell SJ, Murgasova M, Aljabar P, Nunes RG et al (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci U S A 107:20015–20020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fransson P, Skiöld B, Engström M, Hallberg B, Mosskin M, Åden U, Lagercrantz H, Blennow M (2009) Spontaneous brain activity in the newborn brain during natural sleep—an fMRI study in infants born at full term. Pediatr Res 66:301–305

    Article  PubMed  Google Scholar 

  32. Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci U S A 106:6790–6795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20:2852–2862

    Article  PubMed Central  PubMed  Google Scholar 

  34. Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682

    Article  PubMed  Google Scholar 

  35. Sämann PG, Wehrle R, Hoehn D, Spoormaker VI, Peters H, Tully C, Holsboer F, Czisch M (2011) Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex 21:2082–2093

    Article  PubMed  Google Scholar 

  36. Gousias IS, Hammers A, Counsell SJ, Srinivasen L, Rutherford MA, Heckemann RA, Hajnal JV, Rueckers D, Edwards AD (2013) Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions. PLoS One 8(4):e59990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Rosenfeld A, Kak AC (1982) Digital picture processing. Academic, Orlando, FL

    Google Scholar 

  38. Dijk KRAV, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321

    Article  PubMed Central  PubMed  Google Scholar 

  39. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity in MRI networks arise from subject movement. Neuroimage 59:2142–2154

    Article  PubMed Central  PubMed  Google Scholar 

  40. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifacts in resting-state fMRI. Neuroimage 84:320–341

    Article  PubMed  Google Scholar 

  41. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378

    Article  PubMed  Google Scholar 

  42. Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT Press, Cambridge, MA

    Google Scholar 

  43. Mehrkanoon S, Breakspear M, Boonstra TW (2014) Low-dimensional dynamics of resting-state cortical activity. Brain Topogr 27:338–352

    Article  PubMed  Google Scholar 

  44. Betzel RF, Erickson MA, Abell M, O’Donnell BF, Hetrick WP, Sporns O (2012) Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Front Comput Neurosci 6:74

    Article  PubMed Central  PubMed  Google Scholar 

  45. Brookes MJ, O’Neill GC, Hall EL, Woolrich MW, Baker A, Palazzo Corner S, Robson SE, Morris PG, Barnes GR (2014) Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity. Neuroimage 91:282–299

    Article  PubMed  Google Scholar 

  46. Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98

    Article  PubMed Central  PubMed  Google Scholar 

  47. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    Article  PubMed Central  PubMed  Google Scholar 

  48. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15:884–890

    Article  CAS  PubMed  Google Scholar 

  49. Omidvarnia A, Fransson P, Metsäranta M, Vanhatalo S (2014) Functional bimodality in the early electric networks in the human newborn brain. Cereb Cortex 24:2657–2668

    Article  PubMed  Google Scholar 

  50. Tokariev A et al (2012) Phase synchrony in the early preterm EEG: development of methods for estimating synchrony in both oscillations and events. Neuroimage 60:1562–1573

    Article  PubMed  Google Scholar 

  51. Boersma M, Smit DJA, de Bie HMA, Van Baal GCM, Boomsma DI, de Geus EJC, Delemarre-van de Waal HA, Stam CJ (2011) Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp 32:413–425

    Article  PubMed  Google Scholar 

  52. Lobier M, Siebenhühner F, Palva S, Palva JM (2014) Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage 85(Pt 2):853–872

    Article  PubMed  Google Scholar 

  53. Brockmann MD, Pöschel B, Cichon N, Hanganu-Opatz IL (2011) Coupled oscillations mediate directed interactions between prefrontal cortex and hippocampus of the neonatal rat. Neuron 71:332–347. doi:10.1016/j.neuron.2011.05.041

    Article  CAS  PubMed  Google Scholar 

  54. Shriki O, Alstott J, Carver F, Holroyd T, Henson RN, Smith ML, Coppola R, Bullmore E, Plenz D (2013) Neuronal avalanches in the resting MEG of the human brain. J Neurosci 33:7079–7090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Singh AK, Asoh H, Phillips S (2011) Optimal detection of functional connectivity from high-dimensional EEG synchrony data. Neuroimage 58:148–156

    Article  PubMed  Google Scholar 

  56. Sporns O (2013) The human connectome: origins and challenges. Neuroimage 80:53–61

    Article  PubMed  Google Scholar 

  57. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  58. Stam CJ, Tewarie P, Van Dellen E, van Straaten EC, Hillebrand A, Van Mieghem P (2014) The trees and the forest: characterization of complex brain networks with minimum spanning trees. Int J Psychophysiol 92:129–138

    Article  CAS  PubMed  Google Scholar 

  59. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Fransson P, Åden U, Blennow M, Lagercrantz H (2011) The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 21:145–154

    Article  PubMed  Google Scholar 

  61. Fransson P, Metsäranta M, Blennow M, Åden U, Lagercrantz H, Vanhatalo S (2013) Early development of spatial patterns of power-law frequency scaling in fMRI resting-state and EEG data in the newborn brain. Cereb Cortex 23:638–646

    Article  PubMed  Google Scholar 

  62. Arichi T, Moraux A, Melendez A, Doria V, Groppo M, Merchant N, Combs S, Burdet E, Larkman DJ, Counsell SJ, Beckmann CF, Edwards AD (2010) Somatosensory cortical activation identified by functional MRI in preterm and term infants. Neuroimage 49:2063–2071

    Article  CAS  PubMed  Google Scholar 

  63. Roche-Labarbe N, Wallois F, Ponchel E, Kongolo G, Grebe R (2007) Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants. Neuroimage 36:718–727

    Article  CAS  PubMed  Google Scholar 

  64. Colonnese MT, Phillips MA, Constantine-Paton M, Kaila K, Jasanoff A (2008) Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci 11:72–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampsa Vanhatalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vanhatalo, S., Fransson, P. (2016). Advanced EEG and MRI Measurements to Study the Functional Development of the Newborn Brain. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics