Skip to main content

Studies on the Effects Prenatal Immune Activation on Postnatal Behavior: Models of Developmental Origins of Schizophrenia

  • Protocol
Prenatal and Postnatal Determinants of Development

Part of the book series: Neuromethods ((NM,volume 109))

  • 1216 Accesses

Abstract

Human epidemiological studies have indicated an association between infection during pregnancy and an increased risk of neurodevelopmental disorders such as schizophrenia in offspring. As infections arising from various causes have a similar debilitating effect in later life, it is thought that the maternal response, common to most infections, may be the critical factor altering fetal brain development. In this chapter, we discuss various animal models of prenatal exposure to an infection, that have aimed to cause neurobiological, pharmacological and behavioral abnormalities in offspring comparable to those seen in schizophrenic patients. We propose that one such model, the prenatal treatment with the viral mimetic, polyriboinosinic-polyribocytidylic acid (Poly I:C) successfully demonstrates critical features of the human disorder. Therefore, this model is ideal to further investigate the neurodevelopmental basis of schizophrenia and, importantly, may provide a useful tool for testing treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tandon R et al (2008) Schizophrenia, “Just the Facts”: what we know in 2008 part 1: overview. Schizophr Res 100(1-3):4–19

    Article  PubMed  Google Scholar 

  2. Williams JG et al (2006) The epidemiology of autistic spectrum disorders: is the prevalence rising. Arch Dis Child 91:8–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cannon TD (1998) Neurodevelopmental influences in the genesis and epigenesis of schizophrenia: an overview. Appl Prev Psychol 7:47–62

    Article  Google Scholar 

  4. Cannon M, Murray RM (1998) Neonatal origins of schizophrenia. Arch Dis Child 78(1):1–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brown AS et al (2001) Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry 49(6):473–486

    Article  CAS  PubMed  Google Scholar 

  6. Brown AS et al (2000) Nonaffective psychosis after prenatal exposure to rubella. Am J Psychiatry 157(3):438–443

    Article  CAS  PubMed  Google Scholar 

  7. Mednick SA et al (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45(2):189–192

    Article  CAS  PubMed  Google Scholar 

  8. O’Callaghan E et al (1991) Schizophrenia after prenatal exposure to 1957 A2 influenza epidemic. Lancet 337(8752):1248–1250

    Article  PubMed  Google Scholar 

  9. Brown AS et al (2000) Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull 26(2):287–295

    Article  CAS  PubMed  Google Scholar 

  10. Machon RA et al (2002) Adult schizotypal personality characteristics and prenatal influenza in a Finnish birth cohort. Schizophr Res 54(1-2):7–16

    Article  PubMed  Google Scholar 

  11. Limosin F et al (2003) Prenatal exposure to influenza as a risk factor for adult schizophrenia. Acta Psychiatr Scand 107(5):331–335

    Article  CAS  PubMed  Google Scholar 

  12. Brown AS et al (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61(8):774–780

    Article  PubMed  Google Scholar 

  13. Kendell RE, Kemp IW (1989) Maternal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 46(10):878–882

    Article  CAS  PubMed  Google Scholar 

  14. Buka SLS et al (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58(11):1032–1037

    Article  CAS  PubMed  Google Scholar 

  15. Brown AS et al (2005) Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 162(4):767–773

    Article  PubMed  Google Scholar 

  16. Mortensen PB et al (2007) Toxoplasma gondii as a risk factor for early-onset schizophrenia: analysis of filter paper blood samples obtained at birth. Biol Psychiatry 61(5):688–693

    Article  PubMed  Google Scholar 

  17. Suvisaari J et al (1999) Association between prenatal exposure to poliovirus infection and adult schizophrenia. Am J Psychiatry 156(7):1100–1102

    CAS  PubMed  Google Scholar 

  18. Fuller Torrey E et al (1988) Schizophrenic births and viral diseases in two states. Schizophr Res 1(1):73–77

    Article  Google Scholar 

  19. Babulas V et al (2006) Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 163(5):927–929

    Article  PubMed  Google Scholar 

  20. Watanabe Y et al (2010) Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Psychiatry Clin Neurosci 64(3):217–230

    Article  CAS  PubMed  Google Scholar 

  21. Fatemi SH et al (1999) Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 4(2):145–154

    Article  CAS  PubMed  Google Scholar 

  22. Fatemi SH et al (2002) Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol 22(1):25–33

    Article  PubMed  Google Scholar 

  23. Fatemi SH et al (2002) Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice. Mol Psychiatry 7(6):633–640

    Article  CAS  PubMed  Google Scholar 

  24. Bayer TA et al (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271(2):126–128

    Article  CAS  PubMed  Google Scholar 

  25. Shi L et al (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23(1):297–302

    PubMed  Google Scholar 

  26. Shi L et al (2005) Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int J Dev Neurosci 23(2-3):299–305

    Article  PubMed  Google Scholar 

  27. Fatemi SH et al (2012) The viral theory of schizophrenia revisited: abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology 62(3):1290–1298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Golan HM et al (2005) Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48(6):903–917

    Article  CAS  PubMed  Google Scholar 

  29. Urakubo A et al (2001) Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 47(1):27–36

    Article  CAS  PubMed  Google Scholar 

  30. Fidel PL Jr et al (1994) Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol 170(5):1467–1475

    Article  CAS  PubMed  Google Scholar 

  31. Ashdown H et al (2006) The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 11(1):47–55

    Article  CAS  PubMed  Google Scholar 

  32. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14

    Article  CAS  PubMed  Google Scholar 

  33. Romero E et al (2007) Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 32(8):1791–1804

    Article  CAS  PubMed  Google Scholar 

  34. Borrell J et al (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats: implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26(2):204

    Article  CAS  PubMed  Google Scholar 

  35. Hao LY et al (2010) Prenatal exposure to lipopolysaccharide results in cognitive deficits in age-increasing offspring rats. Neuroscience 166(31):763–770

    Article  CAS  PubMed  Google Scholar 

  36. Graciarena M et al (2010) Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFbeta1 downregulation. Brain Behav Immun 24(8):1301–1309

    Article  CAS  PubMed  Google Scholar 

  37. Bakos J et al (2004) Prenatal immune challenge affects growth, behavior, and brain dopamine in offspring. Ann N Y Acad Sci 1018:281–287 (Stress: Current Neuroendocrine and Genetic Approaches)

    Article  CAS  PubMed  Google Scholar 

  38. Quinn TA et al (2014) Adrenal steroidogenesis following prenatal dexamethasone exposure in the spiny mouse. J Endocrinol 221:347

    Article  CAS  PubMed  Google Scholar 

  39. Samuelsson A-M et al (2006) Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 290(5):R1345–R1356

    Article  CAS  PubMed  Google Scholar 

  40. Smith SEP et al (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27(40):10695–10702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hsiao EY, Patterson PH (2011) Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun 25(4):604–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Fortier ME et al (2004) The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 287(4):R759–R766

    Article  CAS  PubMed  Google Scholar 

  43. Alexopoulou L et al (2001) Recognition of double-stranded RNA and activation of NF-[kappa]B by Toll-like receptor 3. Nature 413(6857):732(7)

    Article  Google Scholar 

  44. Meyer U et al (2005) Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29(6):913–947

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham C et al (2007) The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun 21(4):490–502

    Article  CAS  PubMed  Google Scholar 

  46. Gandhi R et al (2007) Influence of poly I:C on sickness behaviors, plasma cytokines, corticosterone and central monoamine activity: moderation by social stressors. Brain Behav Immun 21(4):477–489

    Article  CAS  PubMed  Google Scholar 

  47. Gilmore JH et al (2005) Maternal poly I:C exposure during pregnancy regulates TNF[alpha], BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol 159(1-2):106–112

    Article  CAS  PubMed  Google Scholar 

  48. Meyer U et al (2006) Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun 20(4):378–388

    Article  CAS  PubMed  Google Scholar 

  49. Meyer U et al (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26(18):4752–4762

    Article  CAS  PubMed  Google Scholar 

  50. Song X et al (2011) The nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate reduces polyinosinic-polycytidilic acid-induced immune response in pregnant rats and the behavioral defects of their adult offspring. Behav Brain Funct 7(1):50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Arrode-Bruses G, Bruses JL (2012) Maternal immune activation by poly(I:C) induces expression of cytokines IL-1beta and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J Neuroinflammation 9:83

    Article  CAS  PubMed  Google Scholar 

  52. Arsenault D et al (2014) The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun 38:77–90

    Article  CAS  PubMed  Google Scholar 

  53. Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39:311–323

    Article  PubMed  Google Scholar 

  54. Zuckerman L et al (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28(10):1778–1789

    Article  CAS  PubMed  Google Scholar 

  55. De Miranda J et al (2010) Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. MBio 1(4):e00176410

    Article  Google Scholar 

  56. Meyer U et al (2010) Chronic clozapine treatment improves prenatal infection-induced working memory deficits without influencing adult hippocampal neurogenesis. Psychopharmacology (Berl) 208(4):531–543

    Article  CAS  Google Scholar 

  57. Shi L et al (2009) Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun 23(1):116–123

    Article  PubMed Central  PubMed  Google Scholar 

  58. Ratnayake U et al (2012) Behaviour and hippocampus-specific changes in spiny mouse neonates after treatment of the mother with the viral-mimetic Poly I:C at mid-pregnancy. Brain Behav Immun 26(8):1288–1299

    Article  CAS  PubMed  Google Scholar 

  59. Giovanoli S et al (2013) Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339(6123):1095–1099

    Article  CAS  PubMed  Google Scholar 

  60. Winter C et al (2009) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 12(04):513–524

    Article  CAS  PubMed  Google Scholar 

  61. Vuillermot S et al (2010) A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 30(4):1270–1287

    Article  CAS  PubMed  Google Scholar 

  62. Meyer U et al (2008) Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology 33(2):441–456

    Article  PubMed  Google Scholar 

  63. Ozawa KK et al (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59(6):546–554

    Article  CAS  PubMed  Google Scholar 

  64. Nyffeler M et al (2006) Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience 143(1):51–62

    Article  CAS  PubMed  Google Scholar 

  65. Meyer U et al (2008) Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 22(4):469–486

    Article  CAS  PubMed  Google Scholar 

  66. Li Q et al (2009) Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One 4(7):e6354

    Article  PubMed Central  PubMed  Google Scholar 

  67. Piontkewitz Y et al (2011) Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry 70(9):842–851

    Article  PubMed  Google Scholar 

  68. Wilson CA, Koenig JI (2014) Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 24(5):759–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Ratnayake U et al (2014) Prenatal exposure to the viral mimetic Poly I:C alters fetal brain cytokine expression, and postnatal behaviour. Dev Neurosci 36:83

    Article  CAS  PubMed  Google Scholar 

  70. Bauman MD et al (2014) Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 75(4):332–341

    Article  CAS  PubMed  Google Scholar 

  71. Schwartzer JJ et al (2013) Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatr 3:e240

    Article  CAS  Google Scholar 

  72. Nuechterlein KH et al (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72(1):29–39

    Article  PubMed  Google Scholar 

  73. Ito HT et al (2010) Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav Immun 24(6):930–941

    Article  PubMed Central  PubMed  Google Scholar 

  74. Savanthrapadian S et al (2013) Enhanced hippocampal neuronal excitability and LTP persistence associated with reduced behavioral flexibility in the maternal immune activation model of schizophrenia. Hippocampus 23(12):1395–1409

    Article  PubMed  Google Scholar 

  75. Zhang Y et al (2012) Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacology 62(3):1299–1307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Han M et al (2012) Gender differences in cognitive function of patients with chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 39(2):358–363

    Article  PubMed  Google Scholar 

  77. Wolff AR et al (2011) Behavioural deficits associated with maternal immune activation in the rat model of schizophrenia. Behav Brain Res 225(1):382–387

    Article  PubMed  Google Scholar 

  78. Howland JG et al (2012) Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience 201:184–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Abazyan B et al (2010) Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 68(12):1172–1181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Feldon J, Weiner I (1992) From an animal model of an attentional deficit towards new insights into the pathophysiology of schizophrenia. J Psychiatr Res 26(4):345–366

    Article  CAS  PubMed  Google Scholar 

  81. Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169(3-4):257–297

    Article  CAS  Google Scholar 

  82. Zuckerman L, Weiner I (2003) Post-pubertal emergence of disrupted latent inhibition following prenatal immune activation. Psychopharmacology (Berl) 169(3/4):308

    Article  CAS  Google Scholar 

  83. Ellinwood EH Jr et al (1973) Evolving behavior in the clinical and experimental amphetamine (model) psychosis. Am J Psychiatry 130(10):1088–1093

    Article  PubMed  Google Scholar 

  84. Snyder SH (1973) Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry 130(1):61–67

    Article  CAS  PubMed  Google Scholar 

  85. van den Buuse M et al (2005) Importance of animal models in schizophrenia research. Aust N Z J Psychiatry 39(7):550–557

    Article  PubMed  Google Scholar 

  86. Makinodan M et al (2008) Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring. J Neurosci Res 86(10):2190–2200

    Article  CAS  PubMed  Google Scholar 

  87. Wolff AR, Bilkey DK (2008) Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring. Behav Brain Res 190(1):156–159

    Article  CAS  PubMed  Google Scholar 

  88. Deslauriers J et al (2014) Preventive effect of alpha-lipoic acid on prepulse inhibition deficits in a juvenile two-hit model of schizophrenia. Neuroscience 272:261

    Article  CAS  PubMed  Google Scholar 

  89. Stridh L et al (2013) Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. J Neurosci 33(29):12041–12051

    Google Scholar 

  90. Romero E et al (2010) Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 15(4):372–383

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ratnayake, U., Hill, R.A. (2016). Studies on the Effects Prenatal Immune Activation on Postnatal Behavior: Models of Developmental Origins of Schizophrenia. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics