Skip to main content

Determining the Effects of Membrane-Interacting Peptides on Membrane Integrity

  • Protocol
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

In the study of cell-penetrating and membrane-translocating peptides, a fundamental question occurs as to the contribution arising from fundamental peptide–membrane interactions, relative to the contribution arising from the biology and energy of the cell, mostly occurring in the form of endocytosis and subsequent events. A commonly used approach to begin addressing these mechanistic questions is to measure the degree to which peptides can interact with, and physically disrupt, the integrity of synthetic lipid bilayers. Here, we describe a set of experimental methods that can be used to measure the potency, kinetics, transience, and the effective size of peptide-induced membrane disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montrose K, Yang Y, Sun X, Wiles S, Krissansen GW (2013) Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep 3:1661

    Article  PubMed Central  PubMed  Google Scholar 

  2. Dupont E, Prochiantz A, Joliot A (2011) Penetratin story: an overview. Methods Mol Biol 683:21–29

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt N, Mishra A, Lai GH, Wong GC (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584:1806–1813

    Article  CAS  PubMed  Google Scholar 

  4. Chugh A, Eudes F, Shim YS (2010) Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life 62:183–193

    Article  CAS  PubMed  Google Scholar 

  5. Said HF, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726

    Article  Google Scholar 

  6. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. He J, Kauffman WB, Fuselier T, Naveen SK, Voss TG, Hristova K, Wimley WC (2013) Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J Biol Chem 288:29974–29986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. He J, Hristova K, Wimley WC (2012) A highly charged voltage sensor helix translocates spontaneously across membranes. Angew Chem Int Ed 51:7150–7153

    Article  CAS  Google Scholar 

  9. Marks JR, Placone J, Hristova K, Wimley WC (2011) Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133:8995–9004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ladokhin AS, Wimley WC, Hristova K, White SH (1997) Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods Enzymol 278:474–486

    Article  CAS  PubMed  Google Scholar 

  11. Ladokhin AS, Wimley WC, White SH (1995) Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys J 69:1964–1971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rausch JM, Wimley WC (2001) A high-throughput screen for identifying transmembrane pore-forming peptides. Anal Biochem 293:258–263

    Article  CAS  PubMed  Google Scholar 

  13. Krauson AJ, He J, Wimley WC (2012) Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers. Biochim Biophys Acta 1818:1625–1632

    Article  CAS  PubMed  Google Scholar 

  14. Wiedman G, Fuselier T, He J, Searson PC, Hristova K, Wimley WC (2014) Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide. J Am Chem Soc 136:4724–4731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239:27–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758:1529–1539

    Article  CAS  PubMed  Google Scholar 

  18. Shai Y, Oren Z (2001) From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22:1629–1641

    Article  CAS  PubMed  Google Scholar 

  19. Ladokhin AS, White SH (2001) ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514:253–260

    Article  CAS  PubMed  Google Scholar 

  20. Wiedman G, Herman K, Searson P, Wimley WC, Hristova K (2013) The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization. Biochim Biophys Acta 1828:1357–1364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  PubMed  Google Scholar 

  22. Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317

    Article  CAS  PubMed  Google Scholar 

  23. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  CAS  PubMed  Google Scholar 

  24. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed Central  PubMed  Google Scholar 

  25. White SH, Wimley WC, Ladokhin AS, Hristova K (1998) Protein folding in membranes: determining the energetics of peptide-bilayer interactions. Methods Enzymol 295:62–87

    Article  CAS  PubMed  Google Scholar 

  26. Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285:235–245

    Article  CAS  PubMed  Google Scholar 

  27. Parente RA, Nir S, Szoka F (1990) Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29:8720–8728

    Article  CAS  PubMed  Google Scholar 

  28. Krauson AJ, He J, Wimley WC (2012) Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening. J Am Chem Soc 134:12732–12741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hristova K, Selsted ME, White SH (1997) Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem 272:24224–24233

    Article  CAS  PubMed  Google Scholar 

  30. Goñi FM, Ostolaza H (1998) E. coli a-hemolysin: a membrane-active protein toxin. Braz J Med Biol Res 31:1019–1034

    Article  PubMed  Google Scholar 

  31. Ladokhin AS, Selsted ME, White SH (1997) Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J 72:1762–1766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nayar R, Hope MJ, Cullis PR (1989) Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochim Biophys Acta 986:200–206

    Article  CAS  Google Scholar 

  33. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  34. Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  CAS  PubMed  Google Scholar 

  35. Hristova K, Kenworthy AK, McIntosh TJ (1995) Effect of bilayer composition on the phase behavior of liposomal suspensions containing poly(ethylene glycol)-lipids. Macromolecules 28:7693–7699

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Wimley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wimley, W.C. (2015). Determining the Effects of Membrane-Interacting Peptides on Membrane Integrity. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics