Skip to main content

Databases for Plant Phosphoproteomics

  • Protocol
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1306))

Abstract

Phosphorylation is the most studied posttranslational modification involved in signal transduction in stress responses, development, and growth. In the recent years large-scale phosphoproteomic studies were carried out using various model plants and several growth and stress conditions. Here we present an overview of online resources for plant phosphoproteomic databases: PhosPhAt as a resource for Arabidopsis phosphoproteins, P3DB as a resource expanding to crop plants, and Medicago PhosphoProtein Database as a resource for the model plant Medicago trunculata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Genet 14(1):35–48

    Article  CAS  Google Scholar 

  2. Chung HJ, Sehnke PC, Ferl RJ (1999) The 14-3-3 proteins: cellular regulators of plant metabolism. Trends Plant Sci 4(9):367–371

    Article  PubMed  Google Scholar 

  3. Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3(3):177–186

    Article  CAS  PubMed  Google Scholar 

  4. Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203

    Article  CAS  PubMed  Google Scholar 

  5. Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71:359–362

    Article  CAS  PubMed  Google Scholar 

  6. Camoni L, Iori V, Marra M, Aducci P (2000) Phosphorylation-dependent interaction between plant plasma membrane H(+)ATPase and 14-3-3 proteins. J Biol Chem 275(14):99919–99923

    Article  Google Scholar 

  7. Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132(2):666–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Xue L, Wang P, Wang L, Renzi E, Radivojac P, Tang H, Arnold R, Zhu JK, Tao WA (2013) Quantitative measurement of phosphoproteome response to osmotic stress in arabidopsis based on Library-Assisted eXtracted Ion Chromatogram (LAXIC). Mol Cell Proteomics 12(8):2354–2369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Science Signaling 6(270):rs8

    Article  PubMed  Google Scholar 

  10. Wang X, Goshe MB, Sonderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis Brassinosteroid-insensitive 1 receptor kinase. Plant Cell 17:1685–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wu X, Sanchez-Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12(10):2856–2873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang P, Xue L, Batelli G, Lee S, Hou YJ, Van Oosten MJ, Zhang H, Tao WA, Zhu JK (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 110(27):11205–11210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lan P, Li W, Wen TN, Schmidt W (2012) Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. Plant Physiol 159(1):403–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Reiland S, Messerli G, Baerenfäller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150(2):889–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Li H, Wong WS, Zhu L, Guo HW, Ecker J, Li N (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9(6):1646–1661

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Höhenwarter W, Weckwerth W (2010) Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and MAPA. Plant J 63(1):1–17

    CAS  PubMed  Google Scholar 

  18. Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen starved Arabidopsis seedlings. Plant J 69(6):978–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6(10):1711–1726

    Article  PubMed  Google Scholar 

  20. Kline KG, Barrett-Wilt GA, Sussman MR (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci U S A 107(36):15986–15991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hardin SC, Larue CT, Oh MH, Jain V, Huber SC (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem J 422(2):305–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. van Noort V, Seebacher J, Bader S, Mohammed S, Vonkova I, Betts MJ, Kühnert S, Kumar R, Maier T, O'Flaherty M, Rybin V, Schmeisky A, Yus E, Stülke J, Serrano L, Russell RB, Heck AJ, Bork P, Gavin AC (2012) Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Mol Syst Biol 8:571

    PubMed Central  PubMed  Google Scholar 

  23. Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28:730–738

    Article  CAS  PubMed  Google Scholar 

  24. Thomas SN, Cripps D, Yang AJ (2009) Proteomic analysis of protein phosphorylation and ubiquitination in Alzheimer's disease. Methods Mol Biol 566:109–121

    Article  CAS  PubMed  Google Scholar 

  25. Van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26(6):2367–2389

    Article  PubMed  Google Scholar 

  26. Hummel J, Niemann M, Wienkoop S, Schulze W, Steinhauser D, Selbig J, Walther D, Weckwerth W (2007) ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics 8(1):216–223

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2008) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  PubMed Central  PubMed  Google Scholar 

  28. Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41(D1):D1176–D1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Joshi HJ, Hirsch-Hoffmann M, Bärenfaller K, Gruissem W, Baginsky S, Schmidt R, Schulze WX, Sun Q, van Wijk KJ, Egelhofer V, Wienkoop S, Weckwerth W, Bruley C, Rolland N, Toyoda T, Nakagami H, Jones AME, Briggs SP, Castleden I, Tanz SK, Millar H, Heazlewood JL (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37:D960–D962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2014) P3DB 3.0: from plant phosphorylation sites to protein networks. Nucleic Acids Res 42:D1206–D1213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Huang Y, Houston NL, Tovar-Mendez A, Stevenson SE, Miernyk JA, Randall DD, Thelen JJ (2010) A quantitative mass spectrometry-based approach for identifying protein kinase-clients and quantifying kinase activity. Anal Biochem 402(1):69–76

    Article  CAS  PubMed  Google Scholar 

  35. Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9(12):2586–2600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ane JM, Coon JJ (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152(1):19–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Rose CM, Venkateshwaran M, Grimsrud PA, Westphall MS, Sussman MR, Coon JJ, Ane JM (2012) Medicago PhosphoProtein Database: a repository for Medicago trunculata phosphoprotein data. Frontiers in Plant Science 3:122

    PubMed Central  PubMed  Google Scholar 

  38. Duan G, Walther D, Schulze WX (2013) Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front Plant Sci 4:540

    Article  PubMed Central  PubMed  Google Scholar 

  39. Stecker KE, Minkoff BB, Sussman MR (2014) Phosphoproteomic analyses reveal early signaling event sin the osmotic stress response. Plant Physiol 165(3):1171–1187

    Article  CAS  Google Scholar 

  40. Schwartz D, Gygi SP (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23(11):1391–1398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waltraud X. Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schulze, W.X., Yao, Q., Xu, D. (2015). Databases for Plant Phosphoproteomics. In: Schulze, W. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 1306. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2648-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2648-0_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2647-3

  • Online ISBN: 978-1-4939-2648-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics