Skip to main content

Adjunct Therapy and Calcium Channel Blockers

  • Chapter
  • 1951 Accesses

Part of the book series: Respiratory Medicine ((RM,volume 12))

Abstract

Before the era of pulmonary arterial hypertension (PAH)-specific therapies, clinicians treating patients with pulmonary hypertension (PH) employed nonspecific, time-honored treatments in an effort to help these unfortunate patients. While the role of these therapies has not been rigorously studied they are still commonly used as adjuncts to PAH-specific therapies. This chapter outlines the logic and rationale behind the use of digoxin therapy, anticoagulation, oxygen therapy, diuretic therapy, and high-dose calcium channel blocker therapy and reviews the limited data supporting the use of these therapies in patients with PAH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACCP:

American College of Chest Physicians

ACE:

Angiotensin-converting enzyme

APAH:

Associated pulmonary arterial hypertension

CCB:

Calcium channel blocker

CHD:

Congenital heart disease

CO:

Cardiac output

COPD:

Chronic obstructive pulmonary disease

CPAP:

Continuous positive airway pressure

HIF-1:

Hypoxia-inducible factor-1

iNO:

Inhaled nitric oxide

INR:

International normalized ratio

IPAH:

Idiopathic pulmonary arterial hypertension

LA:

Left atrium

LAP:

Left atrial pressure

LV:

Left ventricle

LVEF:

Left ventricular ejection fractions

mPAP:

Mean pulmonary artery pressure

OSA:

Obstructive sleep apnea

PA:

Pulmonary artery

PAH:

Pulmonary arterial hypertension

PASMC:

Pulmonary artery smooth muscle cells

PAWP:

Pulmonary artery wedge pressure

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RA:

Right atrial

RHF:

Right heart failure (RHF)

RV:

Right ventricle

RVEF:

Right ventricular ejection fraction

SSc:

Systemic sclerosis

WHO:

World Health Organization

References

  1. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115:343–9.

    PubMed  Google Scholar 

  2. Badesch DB, Abman SH, Ahearn GS, Barst RJ, McCrory DC, Simonneau G, et al. Medical therapy for pulmonary hypertension. ACCP evidence-based clinical practice guidelines. Chest. 2004;126:S35–62.

    Google Scholar 

  3. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension. J Am Coll Cardiol. 2009;53:1573–619.

    Google Scholar 

  4. Alam S, Palevsky HI. Standard therapies for pulmonary arterial hypertension. Clin Chest Med. 2007;28:91–115.

    PubMed  Google Scholar 

  5. Withering W. An account of the foxglove and some of its medical uses, with practical remarks on dropsy, and other diseases. In: Willis FA, Keys TE, editors. Classics of cardiology, vol. 1. New York: Henry Schuman, Dover Publications; 1941. p. 231–52.

    Google Scholar 

  6. Eichhorn EJ, Gheorghiade M. Digoxin. Prog Cardiovasc Dis. 2002;44:251–66.

    CAS  PubMed  Google Scholar 

  7. Dec GW. Digoxin remains useful in the management of chronic heart failure. Med Clin N Am. 2003;87:317–37.

    CAS  PubMed  Google Scholar 

  8. Little WC, Rassi A, Freeman GL. Comparison of effects of dobuatmine and ouabaing on left ventricular contraction and relaxation in closed-chest dogs. J Clin Invest. 1987;80:613–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Li PC, Hos CS, Swaminathan R. The chronic effects of long-term digoxin administration on Na+/K+-ATPase activity in rat tissues. Int J Cardiol. 1993;40:95–100.

    CAS  PubMed  Google Scholar 

  10. Hasenfuss G, Mulieri LA, Allen PD, Just H, Alpert NR. Influence of isoproterenol and ouabain on excitation-contraction coupling, cross-bridge function, and energetics in failing human myocardium. Circulation. 1996;94:S3155–60.

    Google Scholar 

  11. Braunwald E. Effects of digitalis on the normal and the failing heart. J Am Coll Cardiol. 1985;5:S51A–9.

    Google Scholar 

  12. Mason DT, Braunwald E. Studies on digitalis. IX. Effects of oubain on the nonfailing human heart. J Clin Invest. 1963;42:1105–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. The Captopril-Digoxin Multicenter Research Group. Comparative effects of therapy with captopril and digoxin in patients with mild to moderate heart failure. JAMA. 1988;259:539–44.

    Google Scholar 

  14. Gheorghiade M, Hall V, Lakier JB, Goldstein S. Comparative hemodynamic and neurohormonal effects of intravenous captopril and digoxin and their combinations in patients with severe heart failure. J Am Coll Cardiol. 1989;13:134–42.

    CAS  PubMed  Google Scholar 

  15. Davies RF, Beanland DS, Nadeau C, Phanefu D, Morris A, Parker JO, et al. Enalapril versus digoxin in patients with congestive heart failure: a multicenter study. Canadian enalapril versus digoxin study group. J Am Coll Cardiol. 1991;18:1602–9.

    CAS  PubMed  Google Scholar 

  16. Gheorghiade M, Ferguson D. Digoxin. A neurohormonal modulator in heart failure? Circulation. 1991;84:2181–6.

    CAS  PubMed  Google Scholar 

  17. Van Veldhusien DJ, Man int’Veld AJ, Dunselman PHJM, Lok DJA, Dohmen HJM, Poortersmans JC, et al. Double-blind placebo-controlled study of Ibopamine and digoxin in patients with mild to moderate heart failure: results of the Dutch ibopamine multicenter trial (DIMT). J Am Coll Cardiol. 1993;22:1564–73.

    Google Scholar 

  18. Krum H, Bigger JT, Goldsmith RL, Packer M. Effect of long-term digoxin therapy on autonomic function in patients with chronic heart failure. J Am Coll Cardiol. 1995;25:289–94.

    CAS  PubMed  Google Scholar 

  19. Newton GE, Tong JH, Schofield AM, Baines AD, Floras JS, Parker JD. Digoxin reduces cardiac sympathetic activity in severe congestive heart failure. J Am Coll Cardiol. 1996;28:155–61.

    CAS  PubMed  Google Scholar 

  20. Ferguson DW, Berg WJ, Sanders JS, Roach PJ, Kempf JS, Kienzle MG. Sympathoinhibitory responses to digitalis glycosides in heart failure patients. Direct evidence from sympathetic neural recordings. Circulation. 1989;80:65–77.

    CAS  PubMed  Google Scholar 

  21. Packer M, Gheorghiade M, Young JB, Costantini PJ, Adams KF, Cody RJ, et al. Withdrawal of digoxin from patients with chronic heart failure treated with angiotensin –converting-enzyme inhibitors. N Engl J Med. 1993;329:1–7.

    CAS  PubMed  Google Scholar 

  22. DiBianco R, Shabetai R, Kostuk W, Moran J, Schlant RC, Wright R. A comparison of oral milrionoe, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med. 1989;320:677–83.

    CAS  PubMed  Google Scholar 

  23. Uretsky BF, Young JB, Shahidi FE, Yellen LG, Harrison MC, Jolly MK. Randomized study assessing the effect of digoxin withdrawal in patients with mild to moderate chronic congestive heart failure: results of the PROVED trial. J Am Coll Cardiol. 1993;22:955–62.

    CAS  PubMed  Google Scholar 

  24. Gheorghiade M, Zarowitz BJ. Review of randomized trials of digoxin therapy in patients with chronic heart failure. Am J Cardiol. 1992;69:S48G–63.

    Google Scholar 

  25. The Digitalis Investigation Group. The effect of digoxin on mortality in patients with heart failure. N Engl J Med. 1997;336:525–33.

    Google Scholar 

  26. Rich S, Seidlitz M, Dodin E, Osimani D, Judd D, Genthner D, et al. Chest. 1998;114:787–92.

    CAS  PubMed  Google Scholar 

  27. Abud EM, Undem C, Punjab A, Zaiman AL, Myers AC, Semenza GL, et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice. PNAS. 2012;109:1239–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Cattell M, Gold H. The influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J Pharmacol Exp Ther. 1938;62:116–25.

    CAS  Google Scholar 

  29. Mathur PN, Powles P, Pugsley SO, McEwan MP, Campell EJM. Effect of digoxin on right ventricular function in severe chronic airflow obstruction. Ann Intern Med. 1981;95:283–8.

    CAS  PubMed  Google Scholar 

  30. Marik PE, Fromm L. A case series of hospitalized patients with elevated digoxin levels. Am J Med. 1998;105:110–5.

    CAS  PubMed  Google Scholar 

  31. Leor J, Goldbout U, Rabinowitz B, Reicher-Ross H, Boyko V, Kaplinsky E, et al. Digoxin and increased mortality among patients recovering from acute myocardial infarction: importance of digoxin dose. Cardiovasc Drugs Ther. 1995;9:723–9.

    CAS  PubMed  Google Scholar 

  32. Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz HM. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289:871–8.

    CAS  PubMed  Google Scholar 

  33. Smith TW, Antman EM, Friedman PL, Blatt CM, Marsh JD. Digitalis glycosides: mechanisms and manifestations of toxicity. Prog Cardiovasc Dis. 1984;27(1):21–56.

    CAS  PubMed  Google Scholar 

  34. Jelliffe RW, Brooker G. A nomogram for digoxin therapy. Am J Med. 1974;57:63–8.

    CAS  PubMed  Google Scholar 

  35. Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeir DA. Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA. 2003;289:1652–8.

    CAS  PubMed  Google Scholar 

  36. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43:S13–24.

    Google Scholar 

  37. Johnson SR, Granton JT, Mehta S. Thrombotic arteriopathy and anticoagulation in pulmonary hypertension. Chest. 2006;130:545–52.

    CAS  PubMed  Google Scholar 

  38. Wagenvoort CA. Lung biopsy specimens in the evaluation of pulmonary vascular disease. Chest. 1980;77:614–25.

    CAS  PubMed  Google Scholar 

  39. Bjornsson J, Edwards WD. Primary pulmonary hypertension: a histopathological study of 80 cases. Mayo Clin Proc. 1985;60:16–25.

    CAS  PubMed  Google Scholar 

  40. Pietra GG, Edwards WD, Kay JM, Rich S, Kernis J, Schloo B, et al. Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary vessels from 58 patients in the National Heart, Lung, and Blood Institute Primary Pulmonary Hypertension Registry. Circulation. 1989;80:1198–206.

    CAS  PubMed  Google Scholar 

  41. Christman BW, McPherson CD, Newman JH, King GA, Bernard BR, Groves BM, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med. 1992;327:70–5.

    CAS  PubMed  Google Scholar 

  42. Welsh CH, Hassell KL, Badesch DB, Kressin DC, Marlar RA. Coagulation and fibrinolytic profiles in patients with severe pulmonary hypertension. Chest. 1996;110:710–7.

    CAS  PubMed  Google Scholar 

  43. Collados MR, Sandoval J, Lopez S, Masso FA, Paez A, Borbolla JR, Monatano LF. Characterization of von Willebrand factor in primary pulmonary hypertension. Heart Vessels. 1999;14:246–52.

    CAS  PubMed  Google Scholar 

  44. Lopes AA, Maeda NY. Circulating von Willebrand factor antigen as a predictor of short-term prognosis in pulmonary hypertension. Chest. 1998;114:1276–82.

    CAS  PubMed  Google Scholar 

  45. Lopes AA, Maeda NY, Aiello VD, Bydlowski SP. Abnormal multimeric and oligomeric composition is associated with enhanced endothelial expression of von Willebrand factor in pulmonary hypertension. Chest. 1993;104:1455–60.

    CAS  PubMed  Google Scholar 

  46. Geggel RL, Carvalho AC, Hoyer LW, Reid LM. von Willebrand factor abnormalities in primary pulmonary hypertension. Am Rev Respir Dis. 1987;135:294–9.

    CAS  PubMed  Google Scholar 

  47. Huber K, Beckman R, Frank H, Kneussl M, Mlczoch J, Binder BR. Am J Respir Crit Care Med. 1994;150:929–33.

    CAS  PubMed  Google Scholar 

  48. Lopes AA, Maeda NY, Almeida A, Jaeger R, Ebaid M, Charmone DF. Circulating platelet aggregates indicative of in vivo platelet activation in pulmonary hypertension. Angiology. 1993;44:701–6.

    CAS  PubMed  Google Scholar 

  49. Cacoub P, Karmochkine M, Dorent R, Nataf P, Piette JC, Godeau P, et al. Plasma levels of thrombomodulin in pulmonary hypertension. Am J Med. 1996;101:160–4.

    CAS  PubMed  Google Scholar 

  50. Eisenberg PR, Lucore C, Kaufman L, Sobel BE, Jaffe AS, Rich S. Circulation. 1990;82:841–7.

    CAS  PubMed  Google Scholar 

  51. Can MM, Tanboga IH, Demircan HC, Ozkan A, Koca F, Keles N, et al. Enhanced hemostatic indices in patients with pulmonary arterial hypertension: an observational study. Thromb Res. 2010;126:280–2.

    CAS  PubMed  Google Scholar 

  52. Herve P, Droute L, Dosquet C, Launa JM, Rain B, Simonneau G, et al. Primary pulmonary hypertension in a patient with a familial platelet storage pool disease: role of serotonin. Am J Med. 1990;89:117–20.

    CAS  PubMed  Google Scholar 

  53. Herve P, Launau JM, Scrobohaci M, Brenot F, Simonneau G, Petipretz P, et al. Increased plasma serotonin in primary pulmonary hypertension. Am J Med. 1995;99:249–54.

    CAS  PubMed  Google Scholar 

  54. Kerveur A, Callebert J, Humbert M, Herve P, Simonneau J, Launay JM, Drouet L. High plasma serotonin levels in primary pulmonary hypertension. Effect of long-term epoprostenol(prostacyclin) therapy. Arterioscler Thromb Vasc Biol. 2000;20:2233–9.

    Google Scholar 

  55. Langleben D, Moroz LA, McGregor M, Lisbona R. Decreased half-life of fibrinogen in primary pulmonary hypertension. Thromb Res. 1985;40:577–80.

    CAS  PubMed  Google Scholar 

  56. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995;333:214–21.

    CAS  PubMed  Google Scholar 

  57. Archer SL, Djaballah K, Humbert M, Weir EK, Fartoukh M, Dallava-santucci J, et al. Am J Respir Crit Care Med. 1998;158:1061–7.

    CAS  PubMed  Google Scholar 

  58. Wolf M, Boyer-Neumann C, Parent F, Eschwege V, Jaillet H, Meyer D, et al. Thrombotic risk factors in pulmonary hypertension. Eur Respir J. 2000;15:395–9.

    CAS  PubMed  Google Scholar 

  59. Hoeper MM, Sosada M, Fabel H. Plasma coagulation profiles in patients with severe primary pulmonary hypertension. Eur Respir J. 1998;12:1446–9.

    CAS  PubMed  Google Scholar 

  60. Lang IM, Klepeko W, Pabinger I. No increased prevalence of factor V Leiden mutation in chronic major vessel thromboembolic pulmonary hypertension (CTEPH). Thromb Haemost. 1996;76:476–7.

    CAS  PubMed  Google Scholar 

  61. Chaouat A, Weitzenblum E, Higenbottom T. The role of thrombosis in severe pulmonary hypertension. Eur Respir J. 1996;9:356–63.

    CAS  PubMed  Google Scholar 

  62. Girgis RE, Champion HC, Diette GB, Johns RA, Permutt S, Sylvester JT. Am J Respir Crit Care Med. 2005;172:352–7.

    PubMed  Google Scholar 

  63. Veyradier A, Nishikubo T, Humbert M, Wolf M, Sitbon O, Simonneau G, et al. Improvement of von Willebrand factor proteolysis after prostacyclin infusion in severe pulmonary arterial hypertension. Circulation. 2000;102:2460–2.

    CAS  PubMed  Google Scholar 

  64. Sakamaki F, Kyotani S, Nagaya N, Sato N, Oya H, Satoh T, et al. Increased plasma p-selectin and decreased thrombomodulin in pulmonary arterial hypertension were improved by continuous prostacyclin therapy. Circulation. 2000;102:2720–5.

    CAS  PubMed  Google Scholar 

  65. Boyer-Neumann C, Brenot F, Wolf M, Peynaud-Debayle E, Duroux P, Meyer D, et al. Continuous infusion of prostacyclin decreases plasma levels of tPA and PAI-1 in pulmonary hypertension. Thromb Haemost. 1995;73:735–6.

    CAS  PubMed  Google Scholar 

  66. Fuster V, Steele PM, Edwards WD, Gersh BJ, McGoon M, Frye RL. Primary pulmonary hypertension: natural history and importance of thrombosis. Circulation. 1984;70:580–7.

    CAS  PubMed  Google Scholar 

  67. Frank H, Mlczoch J, Huber K, Schuster E, Gurtner P, Kneusl M. Chest. 1997;112:714–21.

    CAS  PubMed  Google Scholar 

  68. Kawut SM, Horn EM, Berekashvili KK, Garofano RP, Goldsmith RL, Widliz AC, et al. New predictors of outcomes in idiopathic pulmonary arterial hypertension. Am J Cardiol. 2005;95:199–203.

    PubMed  Google Scholar 

  69. Rich S, Kaufman E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992;327:76–81.

    CAS  PubMed  Google Scholar 

  70. Hrachovinova JP, Ambroz D, Maresova J, Polacek P, Simkova I, Linhart A, et al. Effect of warfarin anticoagulation on thrombin generation in patients with idiopathic pulmonary arterial hypertension. Bratisi Lek Listy. 2010;111:595–8.

    Google Scholar 

  71. Levine MN, Raskob G, Beyth RJ, Keron C, Schulman S. Hermorrhagic complications of anticoagulant treatment: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126:S287–310.

    Google Scholar 

  72. Optiz CF, Mueller EA, Pittrow D. Bleeding events in pulmonary arterial hypertension. Eur J Clin Invest. 2009;39:68–73.

    Google Scholar 

  73. Duchini A, Sessoms SL. Gastrointestinal hemorrhage in patients with systemic sclerosis and CREST syndrome. Am J Gastroenterol. 1998;1998(93):1453–6.

    Google Scholar 

  74. Johnson SR, Granton JT, Tomlinson GA, Grosbein HA, Le T, Lee P, et al. Warfarin in systemic sclerosis-associated and idiopathic pulmonary arterial hypertension. A Bayesian approach to evaluation treatment for uncommon disease. J Rheumatol. 2012;39:276–85.

    PubMed  Google Scholar 

  75. Spangler ML, Saxean S. Warfarin and bosentan interactions in a patient with pulmonary hypertension secondary to bilateral pulmonary emboli. Clin Ther. 2010;32:53–6.

    CAS  PubMed  Google Scholar 

  76. Hoeper MM, Barst RJ, Bourge RC, Feldman J, Frost AE, Galié N, Gómez-Sánchez MA, Grimminger F, Grünig E, Hassoun PM, Morrell NW, Peacock AJ, Satoh T, Simonneau G, Tapson VF, Torres F, Lawrence D, Quinn DA, Ghofrani HA. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation. 2013;127(10):1128–38.

    CAS  PubMed  Google Scholar 

  77. Poli D, Miniati M. The incidence of recurrent venous thromboembolism and chronic thromboembolic hypertension following a first episode of pulmonary embolism. Curr Opin Pulm Med. 2011;17:392–7.

    PubMed  Google Scholar 

  78. Hales CA, Kradin RL, Brandstetter RD, Zhu YJ. Impairment of hypoxic pulmonary artery remodeling by heparin in mice. Am Rev Respir Dis. 1983;128:747–51.

    CAS  PubMed  Google Scholar 

  79. Hassoun PM, Thompson BT, Hales CA. Partial reversal of hypoxic pulmonary hypertension by heparin. Am Rev Respir Dis. 1992;145:193–6.

    CAS  PubMed  Google Scholar 

  80. Hassoun PM, Thompson BT, Steigman D, Hales CA. Effect of heparin and warfarin on chronic hypoxic pulmonary hypertension and vascular remodeling in the guinea pig. Am Rev Respir Dis. 1989;139:763–8.

    CAS  PubMed  Google Scholar 

  81. Yu L, Quinn DA, Garg HG, Hales CA. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension. Biochem Biophys Res Commun. 2006;345:1565–72.

    CAS  PubMed  Google Scholar 

  82. Yu L, Quinn DA, Garg HG, Hale CA. Heparin inhibits pulmonary artery smooth muscle cell proliferation through guanine nucleotide exchange factor-H1/RhoA/Rho kinase/p27. Am J Respir Crit Care Med. 2011;44:524–30.

    CAS  Google Scholar 

  83. Robbins IM, Kawut SM, Yung D, Reilly MP, Loyd W, Cunningham G, et al. A study of aspirin and clopidogrel in idiopathic pulmonary hypertension. Eur Respir J. 2006;27:578–84.

    CAS  PubMed  Google Scholar 

  84. Delbeck M, Nickel KF, Perzborn E, Ellinghaus P, Strassburger J, Kast R, et al. A role for coagulation factor Xa in experimental pulmonary hypertension. Cardiovasc Res. 2011;92:159–68.

    CAS  PubMed  Google Scholar 

  85. Weissman N, Tadic A, Hanze J, Rose F, Winterhalder S, Nollen M, et al. Hypoxic vasoconstriction in intact lungs: a role for NADPH oxidase-derived H2O2? Am J Physiol Lung Cell Mol Physiol. 2000;279:L683–90.

    Google Scholar 

  86. Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease. Ann Intern Med. 1980;93:391–8.

    Google Scholar 

  87. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema: report of the Medical Research Council Working Party. Lancet 1981;1:681-6.

    Google Scholar 

  88. Timms RM, Khaja FU, Williams GW, Nocturnal Oxygen Therapy Trial Group. Hemodynamic response to oxygen therapy in chronic obstructive pulmonary disease. Ann Intern Med. 1985;102:29–36.

    CAS  PubMed  Google Scholar 

  89. Minai O, Pandya C, Golish JA, Avecillas JF, McCarthy K, Marlow S, et al. Predictors of nocturnal oxygen desaturation in pulmonary artery hypertension. Chest. 2007;131:109–17.

    PubMed  Google Scholar 

  90. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHLBI/WHO workshop report. In: Global initiative for chronic obstructive pulmonary lung disease. Bethesda, MD: National Heart, Lung and Blood Institute; 2005 Available at http://www.goldcopd.com/Guidelineitem.asp?11=2&12=1&intID=989. Accessed October 7, 2012.

  91. Owens GR, Rogers RM, Pennock B, Levin D. The diffusing capacity as a predictor of arterial oxygen desaturation during exercise in patients with chronic obstructive pulmonary disease. N Engl J Med. 1984;310:1218–21.

    CAS  PubMed  Google Scholar 

  92. Kelley MA, Panettieri RA, Krupinski AV. Resting single-breath diffusion capacity as aw screening test for exercise-induced hypoxemia. Am J Med. 1986;80:807–12.

    CAS  PubMed  Google Scholar 

  93. Bowyer JJ, Bust CM, Denison DM, Shinebourne EA. Effect of long term oxygen treatment at home in children with pulmonary vascular disease. Br Heart J. 1986;55:385–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Widlitz A, Barst RJ. Pulmonary artery hypertension in children. Eur Respir J. 2003;21:155–76.

    CAS  PubMed  Google Scholar 

  95. Sandoval J, Aguirre JS, Pulido T, Martinez-guerra L, Santos E, Avlarado P, et al. Nocturnal oxygen therapy in patients with the Eisenmenger syndrome. Am J Respir Crit Care Med. 2001;164:1682–7.

    CAS  PubMed  Google Scholar 

  96. Koo KW, Sax DS, Snider G. Arterial blood gases and pH during sleep in chronic obstructive pulmonary disease. Am J Med. 1975;58:663–70.

    CAS  PubMed  Google Scholar 

  97. Atwood CW, McCrory D, Garcia JG, Abman SH, Ahearn GS. Pulmonary artery hypertension and sleep-disordered breathing: ACCP evidence-based clinical practice guidelines. Chest. 2004;126:S72–7.

    Google Scholar 

  98. Podszus T, Bauer W, Mayer J, Penzel T, Peter JH, von Wichert P. Sleep apnea and pulmonary hypertension. Klin Wochenschr. 1986;64:131–4.

    CAS  PubMed  Google Scholar 

  99. Alchanatis M, Tourkhhoriti G, Kakaouros S, Kosmas E, Podaras S, Jordanoglou JB. Daytime pulmonary hypertension in patients with obstructive sleep apnea. The effect of continuous positive airway pressure on pulmonary hemodynamics. Respiration. 2001;68:566–72.

    CAS  PubMed  Google Scholar 

  100. Sakjov D, Saunders NA, Bune AJ, McEvoy RD. Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2002;165:152–8.

    Google Scholar 

  101. Arias M, Garcia-Rio F, Alonso-Fernandes A, Martinez I, Viallamor J. Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: a randomized, controlled cross-over study. Eur Heart J. 2006;27:106–13.

    Google Scholar 

  102. Littleton SW, Mokhlesi B. The Pickwickian syndrome – obesity hypoventilation syndrome. Clin Chest Med. 2009;30:467–78.

    PubMed  Google Scholar 

  103. Kessler R, Chaouat A, Schinkewitch P, Faller M, Casel S, Krieger J, et al. The obesity-hypoventilation syndrome revisited. A prospective study of 34 consecutive cases. Chest. 2001;120:369–76.

    CAS  PubMed  Google Scholar 

  104. Masa JF, Celli BR, Riesco JA, Hernandez M, Sanches de Cos J, Disdier C. The obesity hypoventilation syndrome can be treated with mechanical ventilation. Chest. 2001;119:1102–7.

    CAS  PubMed  Google Scholar 

  105. Nowbar S, Burkart KM, Gonzales R, Fedorowicz A, Gozansky WS, Gaudio JC, et al. Obesity-associated hypoventilation in hospitalized patients: prevalence, effects, and outcome. Am J Med. 2004;116:1–7.

    PubMed  Google Scholar 

  106. Budweiser S, Riedi SG, Jorres RA, Heinemann F, Pfeifer M. Mortality and prognostic factors in patients with obesity-hypoventilation syndrome undergoing noninvasive ventilation. J Intern Med. 2007;261:375–83.

    CAS  PubMed  Google Scholar 

  107. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult. A report of the American College of Cardiology/American Heart Association Task Force for Practice Guidelines (Writing Committee to update the 2001 Guidelines for the Evaluation and Management of Heart Failure) ACC-www.acc.org; AHA-www.americanheart.org 2005; e1-e82.

  108. Gan CTJ, Lankhaar JWS, Marcus T, Westerhof N, Marques KM, Bronzwaer JGF, et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2006;290:H1528–33.

    CAS  PubMed  Google Scholar 

  109. Dittrich HC, Chow LC, Nicod PH. Early improvement in left ventricular diastolic function after relief of chronic right ventricular pressure overload. Circulation. 1989;80:823–30.

    CAS  PubMed  Google Scholar 

  110. Krayenbuehl HP, Turina J, Hess O. Left ventricular function in chronic pulmonary hypertension. Am J Cardiol. 1978;41:1150–8.

    CAS  PubMed  Google Scholar 

  111. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe left heart failure. N Engl J Med. 1999;341:709–17.

    CAS  PubMed  Google Scholar 

  112. Quinn DA, Du HK, Thompson BT, Hales CA. Amiloride analogs inhibit chronic hypoxic pulmonary hypertension. Am J Respir Crit Care Med. 1998;157:1263–8.

    CAS  PubMed  Google Scholar 

  113. Rubin LJ, Peter RH. Oral hydralazine therapy for primary pulmonary hypertension. N Engl J Med. 1980;302:69–73.

    CAS  PubMed  Google Scholar 

  114. Carmerini F, Alberti E, Klugmann S, Salvi A. Primary pulmonary hypertension: effects of nifedipine. Br Heart J. 1980;44:352–6.

    Google Scholar 

  115. Packer M, Greenberg B, Massie B, Dash H. Deleterious effects of hydralazine in patients with pulmonary hypertension. N Engl J Med. 1982;306:1326–31.

    CAS  PubMed  Google Scholar 

  116. McLaughlini VV, McGoon MD. Pulmonary arterial hypertension. Circulation. 2006;114(13):1417–31.

    Google Scholar 

  117. Newman JH, Phillips JA, Loyd JE. Narrative review: the enigma of pulmonary arterial hypertension: new insights from genetic studies. Ann Intern Med. 2008;148:278–83.

    PubMed  Google Scholar 

  118. Rich S, Kaufmann E. High dose titration of calcium channel blocking agents for primary pulmonary hypertension: guidelines for short-term testing. J Am Coll Cardiol. 1991;18:1323–7.

    CAS  PubMed  Google Scholar 

  119. Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S, et al. Long-term response to calcium channel blockers in idiopathic pulmonary hypertension. Circulation. 2005;111:3105–11.

    CAS  PubMed  Google Scholar 

  120. Elliot CG, Glissmeyer EW, Gavlena GT, Carlquist J, McKinney JT, McGoon MD, et al. Relationship of BMPR2 mutations to vasoreactivity in pulmonary arterial hypertension. Circulation. 2006;113:2509–15.

    Google Scholar 

  121. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Pulmonary arterial hypertension in France. Results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–30.

    PubMed  Google Scholar 

  122. Montani D, Savale L, Natali D, Jais X, Herve P, Garcia G, et al. Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31:1898–907.

    CAS  PubMed  Google Scholar 

  123. Guidelines of diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J. 2004;25:2243–78.

    Google Scholar 

  124. Oliveira EC, Ribeiro ALP, Amaral CFS. Adenosine for vasoreactivity testing in pulmonary hypertension: a head-to-head comparison with inhaled nitric oxide. Respir Med. 2010;104:606–11.

    PubMed  Google Scholar 

  125. Preston IR, Klinger JR, Houtchens J, Nelson D, Mehta S, Hill NS. Pulmonary edema caused by inhaled nitric oxide therapy in two patients with pulmonary hypertension associated with CREST syndrome. Chest. 2002;121:656–9.

    PubMed  Google Scholar 

  126. Farber HW, Graven KK, Kokolski G, Korn JH. Pulmonary edema during acute infusion of epoprostenol in a patient with pulmonary hypertension and limited scleroderma. J Rheumatol. 1999;26:1195–6.

    CAS  PubMed  Google Scholar 

  127. Strange C, Bolster M, Mazur J, Taylor M, Gossage JR, Silver R. Chest. Hemodynamic effects of epoprostenol in patients with systemic sclerosis and pulmonary hypertension. 2000;118:1077–82.

    CAS  PubMed  Google Scholar 

  128. Rubin LJ, Mendoza J, Hood M, McGoon M, Barst R, Williams WB, et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann Intern Med. 1990;112:485–91.

    CAS  PubMed  Google Scholar 

  129. Palmer SM, Robinson LJ, Wang A, Gossage JR, Bashore T, Tapson VF. Massive pulmonary edema and death after prostacyclin infusion in a patient with pulmonary veno-occlusive disease. Chest. 1998;113:237–40.

    CAS  PubMed  Google Scholar 

  130. Zakliczynski M, Zebik T, Maruszewski M, Swierad M, Zembala M. Usefulness of pulmonary hypertension reversibility test with sodium nitroprusside in stratification of early death risk after orthotopic heart transplantation. Transplant Proc. 2005;37:1346–8.

    CAS  PubMed  Google Scholar 

  131. Barst RJ, Rubin LJ, McGoon MD, Caldwell EJ, Long WA, Levy PS. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med. 1994;121:409–15.

    CAS  PubMed  Google Scholar 

  132. Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, et al. A comparison of continous intravenous epoprostenol(prostacylin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996;334:296–301.

    CAS  PubMed  Google Scholar 

  133. Rich S, Brundage BH. High-dose calcium channel-blocking therapy for primary pulmonary hypertension: evidence for long-term reduction in pulmonary arterial pressure and regression of right ventricular hypertrophy. Circulation. 1987;76(1):135–41.

    CAS  PubMed  Google Scholar 

  134. Ziesche R, Petkov V, Wittman K, Kopatschka J, Striebellehner L, Schenk P, et al. Treatment with epoprostenol reverts nitric oxide non-responsiveness in patients with primary pulmonary hypertension. Heart. 2000;83:406–9.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence K. Trow M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trow, T.K. (2015). Adjunct Therapy and Calcium Channel Blockers. In: Klinger, J., Frantz, R. (eds) Diagnosis and Management of Pulmonary Hypertension. Respiratory Medicine, vol 12. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2636-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2636-7_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2635-0

  • Online ISBN: 978-1-4939-2636-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics