Skip to main content

Integrated DNA Methylation and Chromatin Structural Analysis at Single-Molecule Resolution

  • Protocol
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1288))

Abstract

Chromatin limits the accessibility of DNA to trans-acting factors in transcription, replication, and repair. Although transcriptional variation between cells in a population may contribute to survival and disease, most assays of chromatin structure recover only population averages. We have developed DNA methyltransferases (MTases) as probing agents of DNA accessibility in chromatin, either expressed in vivo in budding yeast or as recombinant enzymatic probes of nuclei isolated from mammalian cells. In this chapter, we focus on the use of recombinant MTase (M) M.CviPI to probe chromatin accessibility in nuclei isolated from mammalian cell lines and animal tissue. This technique, named methylation accessibility protocol for individual templates (MAPit), reports protein–DNA interactions at single-molecule resolution. The single-molecule readout allows identification of chromatin subpopulations and rare epigenetic variants within a cell population. Furthermore, the use of M.CviPI in mammalian systems gives a comprehensive view of both chromatin structure and endogenous DNA methylation in a single assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pondugula S, Kladde MP (2008) Single-molecule analysis of chromatin: changing the view of genomes one molecule at a time. J Cell Biochem 105:330–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kilgore JA, Hoose SA, Gustafson TL, Porter W, Kladde MP (2007) Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 41:320–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Pardo C, Hoose SA, Pondugula S, Kladde MP (2009) DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 523:41–65

    Article  CAS  PubMed  Google Scholar 

  4. Xu M, Kladde MP, Van Etten JL, Simpson RT (1998) Cloning, characterization and expression of the gene coding for cytosine-5-DNA methyltransferase recognizing GpC sites. Nucleic Acids Res 26:3961–3966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kladde MP, Xu M, Simpson RT (1996) Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J 15:6290–6300

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Xu M, Simpson RT, Kladde MP (1998) Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol Cell Biol 18:1201–1212

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Jessen WJ, Dhasarathy A, Hoose SA, Carvin CD, Risinger AL, Kladde MP (2004) Mapping chromatin structure in vivo using DNA methyltransferases. Methods 33:68–80

    Article  CAS  PubMed  Google Scholar 

  8. Hoose SA, Kladde MP (2006) DNA methyltransferase probing of DNA-protein interactions. Methods Mol Biol 338:225–244

    CAS  PubMed  Google Scholar 

  9. Jessen WJ, Hoose SA, Kilgore JA, Kladde MP (2006) Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 13:256–263

    Article  CAS  PubMed  Google Scholar 

  10. Hayatsu H (1976) Bisulfite modification of nucleic acids and their constituents. Prog Nucleic Acid Res 16:75–124

    Article  CAS  Google Scholar 

  11. Frommer M, MacDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7, Unit 7.9.1–16

    Google Scholar 

  14. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, Jones PA (2005) Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 33:e176

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gal-Yam EN, Jeong S, Tanay A, Egger G, Lee AS, Jones PA (2006) Constitutive nucleosome depletion and ordered factor assembly at the GRP78 promoter revealed by single molecule footprinting. PLoS Genet 2:e160

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, Jones PA et al (2007) Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12:432–444

    Article  CAS  PubMed  Google Scholar 

  17. Pardo CE, Carr IM, Hoffman CJ, Darst RP, Markham AF, Bonthron DT, Kladde MP (2011) MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects. Nucleic Acids Res 39:e5

    Article  PubMed Central  PubMed  Google Scholar 

  18. Pardo CE, Darst RP, Nabilsi NH, Delmas AL, Kladde MP (2011) Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit. Curr Protoc Mol Biol Chapter 21, Unit 21.22.1–18

    Google Scholar 

  19. Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP (2013) Epigenetic diversity of Kaposi’s sarcoma-associated herpesvirus. Nucleic Acids Res 41:2993–3009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD et al (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6:e1000917

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kelly TK, Miranda TB, Liang G, Berman BP, Lin JC, Tanay A, Jones PA (2010) H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol Cell 39:901–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Darst RP, Pardo CE, Pondugula S, Gangaraju VK, Nabilsi NH, Bartholomew B, Kladde MP (2012) Simultaneous single-molecule detection of endogenous C-5 DNA methylation and chromatin accessibility using MAPit. Methods Mol Biol 833:125–141

    Article  CAS  PubMed  Google Scholar 

  23. Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 22:2497–2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yang X, Noushmehr H, Han H, Andreu-Vieyra C, Liang G, Jones PA (2012) Gene reactivation by 5-aza-2′-deoxycytidine-induced demethylation requires SRCAP-mediated H2A.Z insertion to establish nucleosome depleted regions. PLoS Genet 8:e1002604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Darst RP, Nabilsi NH, Pardo CE, Riva A, Kladde MP (2012) DNA methyltransferase accessibility protocol for individual templates by deep sequencing. Methods Enzymol 513:185–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nabilsi NH, Deleyrolle LP, Darst RP, Riva A, Reynolds BA, Kladde MP (2014) Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma. Genome Res 24:329–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clark SJ (2002) Identification and resolution of artifacts in bisulfite sequencing. Methods 27:101–107

    Article  CAS  PubMed  Google Scholar 

  28. Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida for high-throughput sequencing. This work was supported by R01CA155390 from the National Cancer Institute to M.P.K. as well as 2BT01 (Team Science Project) and 1BD03 (Postdoctoral Research Fellowship) from the Florida Department of Health Bankhead-Coley Cancer Research Program to M.P.K. and N.H.N., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Kladde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pardo, C.E., Nabilsi, N.H., Darst, R.P., Kladde, M.P. (2015). Integrated DNA Methylation and Chromatin Structural Analysis at Single-Molecule Resolution. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 1288. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2474-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2474-5_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2473-8

  • Online ISBN: 978-1-4939-2474-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics