Skip to main content

Transcriptome-Wide Identification of In Vivo Interactions Between RNAs and RNA-Binding Proteins by RIP and PAR-CLIP Assays

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1288))

Abstract

Comprehensive genomic and computational studies in the era of high-throughput sequencing revealed that the major proportion of the human genome is transcribed. This novel insight confronted the scientific community with new questions concerning the expanded role of RNA, especially noncoding RNA (ncRNA), in cellular pathways. In recent years, there has been mounting evidence that ncRNAs and RNA binding proteins (RBPs) are involved in a wide range of biological processes, such as developmental transitions, cell differentiation, stress response, genome organization, and regulation of gene expression. In particular, in the chromatin field long noncoding RNAs (lncRNAs) have drawn increasing attention to their function in epigenetic regulation due to the fact that they were found to interact with multiple chromatin regulators and modifiers. Recently, techniques to study the extent of RNA–protein interactions have been developed in many research laboratories. Here we describe protocols for RNA Immunoprecipitation-Sequencing (RIP-Seq) and Photoactivatable-Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation combined with deep sequencing (PAR-CLIP-Seq) to identify RNA targets of RNA-binding proteins (RBPs) on a transcriptome-wide level, discussing advantages and drawbacks.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  2. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Guttman M, Amit I, Garber M, French C, Lin MF et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hirose T, Mishima Y, Tomari Y (2014) Elements and machinery of non-coding RNAs: toward their taxonomy. EMBO Rep 15:489–507

    Article  CAS  PubMed  Google Scholar 

  8. Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci U S A 89:11219–11223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Li W, Notani D, Ma Q, Tanasa B, Nunez E et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535

    Article  CAS  PubMed  Google Scholar 

  11. Mousavi K, Zare H, Dell’orso S, Grontved L, Gutierrez-Cruz G et al (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51:606–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  CAS  PubMed  Google Scholar 

  15. Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    Article  CAS  PubMed  Google Scholar 

  16. Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A et al (2012) Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 26:338–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Li L, Liu B, Wapinski OL, Tsai MC, Qu K et al (2013) Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 5:3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M et al (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504:465–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ et al (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bertani S, Sauer S, Bolotin E, Sauer F (2011) The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43:1040–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yang Z, Zhou L, Wu LM, Lai MC, Xie HY et al (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18:1243–1250

    Article  PubMed  Google Scholar 

  26. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S et al (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326

    Article  CAS  PubMed  Google Scholar 

  27. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H et al (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72:1126–1136

    Article  CAS  PubMed  Google Scholar 

  28. Geng YJ, Xie SL, Li Q, Ma J, Wang GY (2011) Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 39:2119–2128

    Article  CAS  PubMed  Google Scholar 

  29. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gilbert C, Kristjuhan A, Winkler GS, Svejstrup JQ (2004) Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol Cell 14:457–464

    Article  CAS  PubMed  Google Scholar 

  31. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307

    Article  CAS  PubMed  Google Scholar 

  32. Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  CAS  PubMed  Google Scholar 

  33. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Khalil AM, Guttman M, Huarte M, Garber M, Raj A et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A et al (2009) Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 5:e1000670

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  37. Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    Article  CAS  PubMed  Google Scholar 

  38. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Konig J, Zarnack K, Rot G, Curk T, Kayikci M et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

    Article  PubMed Central  PubMed  Google Scholar 

  40. Huppertz I, Attig J, D’Ambrogio A, Easton LE, Sibley CR et al (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65:274–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY et al (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD et al (2009) An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16:130–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Urlaub H, Hartmuth K, Luhrmann R (2002) A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods 26:170–181

    Article  CAS  PubMed  Google Scholar 

  46. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M et al (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8:559–564

    Article  CAS  PubMed  Google Scholar 

  47. Granneman S, Kudla G, Petfalski E, Tollervey D (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 106:9613–9618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lozzio CB, Wigler PW (1971) Cytotoxic effects of thiopyrimidines. J Cell Physiol 78:25–32

    Article  CAS  PubMed  Google Scholar 

  49. Friedersdorf MB, Keene JD (2014) Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs. Genome Biol 15:R2

    Article  PubMed Central  PubMed  Google Scholar 

  50. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13:1198–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104:19291–19296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Riley KJ, Steitz JA (2013) The “Observer Effect” in genome-wide surveys of protein-RNA interactions. Mol Cell 49:601–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Saldana-Meyer R, Gonzalez-Buendia E, Guerrero G, Narendra V, Bonasio R et al (2014) CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev 28:723–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S et al (2011) RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol Biol 18:1428–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M et al (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352

    Article  CAS  PubMed  Google Scholar 

  57. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10:1692–1694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical assistance of Georgina Guerrero Avendaño and Fernando Suaste Olmos. This work was supported by the DGAPA, UNAM (IN209403, IN203811 and IN201114), and CONACyT (42653-Q, 128464 and 220503); Ph.D. fellowship from CONACyT and Dirección General de Estudios de Posgrado-Universidad Nacional Autónoma de México (DGEP) (EG-B and RS-M). Additional support was provided by the PhD Graduate Program, “Doctorado en Ciencias Biomédicas,” to the Instituto de Fisiología Celular and the Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Recillas-Targa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

González-Buendía, E., Saldaña-Meyer, R., Meier, K., Recillas-Targa, F. (2015). Transcriptome-Wide Identification of In Vivo Interactions Between RNAs and RNA-Binding Proteins by RIP and PAR-CLIP Assays. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 1288. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2474-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2474-5_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2473-8

  • Online ISBN: 978-1-4939-2474-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics