Skip to main content

QSAR/QSPR as an Application of Artificial Neural Networks

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

Quantitative Structure–Activity Relationships (QSARs) and Quantitative Structure–Property Relationships (QSPRs) are mathematical models used to describe and predict a particular activity/property of compounds. On the other hand, the Artificial Neural Network (ANN) is a tool that emulates the human brain to solve very complex problems. The exponential need for new compounds in the drug industry requires alternatives for experimental methods to decrease development time and costs. This is where chemical computational methods have a great relevance, especially QSAR/QSPR-ANN. This chapter shows the importance of QSAR/QSPR-ANN and provides examples of its use.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. de la Fuente Aparicio Ma J, Calonge Cano T (1999) Aplicaciones de las redes de neuronas en supervisión, diagnosis y control de procesos. Universidad Simón Bolívar, Caracas-Venezuela, p 11

    Google Scholar 

  2. Brégains JC (2007) Análisis síntesis y control de diagramas de radiación generados por distribuciones continuas y discretas utilizando algoritmos estadísticos y redes neuronales artificiales aplicaciones. Universidad de Santiago de Compostela, Galicia-Spain, p 104

    Google Scholar 

  3. Flores López R, Fernández Fernández JM (2008) Las redes neuronales artificiales Fundamentos teóricos y aplicaciones prácticas. Netbiblo, S.L., Spain, pp 12–14, 17, 21

    Google Scholar 

  4. Pino Diez R, Gómez Gómez A, de Abajo Martínez N (2001) Introducción a la inteligencia artificial: Sistemas expertos, redes neuronales artificiales y computación evolutiva. Universidad de Oviedo, Asturias-Spain, pp 27, 28

    Google Scholar 

  5. Douali L, Villemin D, Cherqaoui D (2003) Neural networks: accurate nonlinear QSAR model for HEPT derivatives. J Chem Inf Comput Sci 43:1200–1207

    Article  CAS  PubMed  Google Scholar 

  6. Andrews R, Diederich J, Tickle AB (1995) Survey and critique of techniques for extracting rules from trained artificial neuronal networks. Knowl Base Syst 8:373–389

    Article  Google Scholar 

  7. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09. Gaussian, Inc., Wallingford CT

    Google Scholar 

  8. Stewart JJP (2009) MOPAC 2009. Fujitsu Limited, Tokyo, Japan

    Google Scholar 

  9. HyperChem(TM) 2003 Professional 7.51, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA

    Google Scholar 

  10. MATLAB Version 7.2.0.232 (R2006a). The MathWorks, Inc. (2006) Natick, MA

    Google Scholar 

  11. SPSS Version 13 for Windows (2004) Chicago, IL

    Google Scholar 

  12. Todeschini R, Consonni V, Pavan M (2002) Dragon Software version 2.1-2002 Pisani 13, Milano. Dragon Software and references therein

    Google Scholar 

  13. Vendrame R, Braga RS, Takahata Y et al (1999) Structure–activity relationship studies of carcinogenic activity of polycyclic aromatic hydrocarbons using calculated molecular descriptors with principal component analysis and neural network methods. J Chem Inf Comput Sci 39:1094–1104

    Article  CAS  PubMed  Google Scholar 

  14. Jolliffe IT (1986) Principal component analysis. Springer, New York, NY

    Book  Google Scholar 

  15. Xie YL, Kalivas JH (1997) Evaluation of principal component selection methods to form a global prediction model by principal component regression. Anal Chim Acta 348:19–27

    Article  CAS  Google Scholar 

  16. Depczynski U, Frost VJ, Molt K (2000) Genetic algorithm applied to the selection of factors in principal component regression. Anal Chim Acta 420:217–227

    Article  CAS  Google Scholar 

  17. Dehmer M, Varmuza K, Bonchev D (2012) Statistical modelling of molecular descriptors in QSAR/QSPR. Wiley, Germany, p 2

    Book  Google Scholar 

  18. Free SM, Wilson JA (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399

    Article  CAS  PubMed  Google Scholar 

  19. Hansch C, Fujita T (1964) p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  20. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  21. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: volume 2: hydrophobic, electronic, and steric constants. American Chemical Society, Washington, DC

    Google Scholar 

  22. Helma C, Kramer S (2003) A survey of the predictive toxicology challenge 2000–2001. Bioinformatics 19:1179–1182

    Article  CAS  PubMed  Google Scholar 

  23. Waterbeemd H, Gifford E (2003) ADMET in silico modeling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  PubMed  Google Scholar 

  24. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley-Interscience, New York, USA

    Google Scholar 

  25. Ramírez-Galicia G, Garduño-Juárez R, Hemmateenejad B et al (2007) QSAR study on the relaxant agents from some Mexican medicinal plants and synthetic related organic compounds. Chem Biol Drug Des 70:143–153

    Article  PubMed  Google Scholar 

  26. Marini F, Bucci R, Magrì AL et al (2008) Artificial neural networks in chemometrics: history, examples and perspectives. Microchem J 8:178–185

    Article  Google Scholar 

  27. Fernández EF, Almonacid F, Sarmah N et al (2014) A model based on artificial neuronal network for the prediction of the maximum power of a low concentration photovoltaic module for building integration. Sol Energ 100:148–158

    Article  Google Scholar 

  28. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727

    Article  CAS  PubMed  Google Scholar 

  29. Ramírez-Galicia G, Garduño-Juárez R, Hemmateenejad B et al (2007) QSAR Study on the antinociceptive activity of some morphinans. Chem Biol Drug Des 70:53–64

    Article  PubMed  Google Scholar 

  30. Schbeider G, Wrede P (1998) Artificial neural networks for computer-based molecular dosing. Prog Biophysics Mol Biol 70:175–222

    Article  Google Scholar 

  31. Deeb O (2010) Correlation ranking and stepwise regression procedures in principal components artificial neural networks modeling with application to predict toxic activity and human serum albumin binding affinity. Chemometr Intell Lab Syst 104:181–194

    Article  CAS  Google Scholar 

  32. Ramírez-Galicia G, Garduño-Juárez R, Deeb O et al (2008) MLR–ANN and RTO Approach to μ-opioid receptor-binding affinity. Pooling data from different sources. Chem Biol Drug Des 71:260–270

    Article  PubMed  Google Scholar 

  33. Deeb O, Drabh M (2010) Exploring QSARs of some analgesic compounds by PC-ANN. Chem Biol Drug Des 76:255–262

    Article  CAS  PubMed  Google Scholar 

  34. Deeb O, Goodarzi M, Khadikar PV (2012) Quantum chemical QSAR models to distinguish between inhibitory activities of sulfonamides against human carbonic anhydrase I and II and bovine IV isozymes. Chem Biol Drug Des 79:514–522

    Article  CAS  PubMed  Google Scholar 

  35. Deeb O, Jawabreh S, Goodarzi M (2013) Exploring QSAR’s of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by MLR, PLS and PC-ANN. Curr Pharm Des 19:2237–2244

    Article  CAS  PubMed  Google Scholar 

  36. Hemmateenejad B, Mehdipou A, Deeb O et al (2011) Toward an optimal approach for variable selection in counter-propagation neural networks: modeling protein–tyrosine kinase inhibitory of flavanoids using substituent electronic descriptors. Mol Inform 30:939–949

    Article  CAS  Google Scholar 

  37. Deeb O, Khadikar PV, Goodarzi M (2010) QSPR modeling of bioconcentration factors of nonionic organic compounds. Environ Health Insights 4:33–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Deeb O, Khadikar PV, Goodarzi M (2011) Study of gas/particle partitioning coefficients of semivolatile organic compounds via QSPR methods. J Iran Chem Soc 8:176–192

    Article  CAS  Google Scholar 

  39. Deeb O, Goodarzi M (2010) Predicting the solubility of pesticides compounds in water via QSPR methods. Mol Phys 108:181–192

    Article  CAS  Google Scholar 

Download references

Acknowledgement

AC Martínez-Olguín wishes to thank CONACyT for a graduate scholarship. The English was kindly reviewed by Miss Désirée Argott.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Deeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Montañez-Godínez, N., Martínez-Olguín, A.C., Deeb, O., Garduño-Juárez, R., Ramírez-Galicia, G. (2015). QSAR/QSPR as an Application of Artificial Neural Networks. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics