Skip to main content

Abstract

Printing technology has been extensively investigated, with the majority of that investigation historically based upon applications to the two-dimensional printing industry. Recently, however, it has spread to numerous new application areas, including electronics packaging, optics, and additive manufacturing. Some of these applications, in fact, have literally taken the technology into a new dimension. The employment of printing technologies in the creation of three-dimensional products has quickly become an extremely promising manufacturing practice, both widely studied and increasingly widely used.

This chapter will summarize the printing achievements made in the additive manufacturing industry and in academia. The development of printing as a process to fabricate 3D parts is summarized, followed by a survey of commercial polymer printing machines. The focus of this chapter is on material jetting (MJ) in which all of the part material is dispensed from a print head. This is in contrast to binder jetting, where binder or other additive is printed onto a powder bed which forms the bulk of the part. Binder jetting is the subject of Chap. 8. Some of the technical challenges of printing are introduced; material development for printing polymers, metals, and ceramics is investigated in some detail. Models of the material jetting process are introduced that relate pressure required to fluid properties. Additionally, a printing indicator expression is derived and used to analyze printing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62

    Google Scholar 

  2. The rapid prototyping patent museum: basic technology patents. http://www.additive3d.com/museum/mus_c.htm. Accessed 17 Aug 2013

  3. Wohlers T (2004) Wohlers report 2004. Wohlers Associates, Fort Collins

    Google Scholar 

  4. Derby B, Reis N (2003) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28(11):815–818

    Article  Google Scholar 

  5. De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213

    Article  Google Scholar 

  6. MicroFab Technologies. MicroFab technote 99-02: fluid properties effects on ink-jet device performance. http://www.microfab.com/equipment/technotes.html

  7. Paton A, Kruse J (1995) Reduced nozzle viscous impedance. US Patent 5,463,416

    Google Scholar 

  8. Gao F, Sonin AA (1994) Precise deposition of molten microdrops: the physics of digital fabrication. Proc R Soc Lond A 444:533–554

    Article  Google Scholar 

  9. Reis N, Seerden KAM, Derby B, Halloran JW, Evans JRG (1999) Direct inkjet deposition of ceramic green bodies: II—jet behaviour and deposit formation. Mater Res Soc Symp Proc 542:147–152

    Article  Google Scholar 

  10. Feng W, Fuh J, Wong Y (2006) Development of a drop-on-demand micro dispensing system. Mater Sci Forum 505–507:25–30

    Article  Google Scholar 

  11. 3D Systems professional printers. http://www.3dsystems.com/3d-printers/professional/overview. Accessed 17 Aug 2013

  12. Leyden R, Hull W (1999) Method for selective deposition modeling. US Patent 5,855,836

    Google Scholar 

  13. De Gans BJ, Kazancioglu E, Meyer W, Schubert US (2004) Ink-jet printing polymers and polymer libraries using micropipettes. Macromol Rapid Commun 25:292–296

    Article  Google Scholar 

  14. Xu P, Ruatta S, Schmidt K, Doan V (2004) Phase change support material composition. US Patent 7,399,796

    Google Scholar 

  15. Schmidt K (2005) Selective deposition modeling with curable phase change materials. US Patent 6,841,116

    Google Scholar 

  16. Tay B, Edirisinghe MJ (2001) Investigation of some phenomena occurring during continuous ink-jet printing of ceramics. J Mater Res 16(2):373–384

    Article  Google Scholar 

  17. Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts. J Mater Sci 37:3155–3161

    Article  Google Scholar 

  18. Zhao X, Evans JRG, Edirisinghe MJ (2002) Direct ink-jet printing of vertical walls. J Am Ceram Soc 85(8):2113–2115

    Article  Google Scholar 

  19. Wang T, Derby B (2005) Ink-jet printing and sintering of PZT. J Am Ceram Soc 88(8):2053–2058

    Article  Google Scholar 

  20. Liu Q, Orme M (2001) High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol 115:271–283

    Article  Google Scholar 

  21. Priest JW, Smith C, DuBois P (1997) Liquid metal jetting for printing metal parts. In: Solid freeform fabrication symposium, Austin, TX, 11–13 Aug, pp 1–9

    Google Scholar 

  22. Orme M (1993) A novel technique of rapid solidification net-form material synthesis. J Mater Eng Perform 2:399–405

    Article  Google Scholar 

  23. Orme M, Huang C, Courter J (1996) Precision droplet-based manufacturing and material synthesis: fluid dynamics and thermal control issues. Atomization Sprays 6:305–329

    Article  Google Scholar 

  24. Yamaguchi K (2003) Generation of 3-dimensional microstructure by metal jet. Microsyst Technol 9:215–219

    Article  Google Scholar 

  25. Yamaguchi K, Sakai K, Yamanka T, Hirayama T (2000) Generation of three-dimensional micro structure using metal jet. Precis Eng 24:2–8

    Article  Google Scholar 

  26. Liu Q, Orme M (2001) On precision droplet-based net-form manufacturing technology. Proc Inst Mech Eng B J Eng Manuf 215:1333–1355

    Article  Google Scholar 

  27. Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173:209–212

    Article  Google Scholar 

  28. Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet printing of light-emitting polymer displays. MRS Bull 28:821–827

    Article  Google Scholar 

  29. Zhao X, Evans JRG, Edirisinghe MJ, Song JH (2001) Ceramic freeforming using an advanced multinozzle ink-jet printer. J Mater Synth Proces 9(6):319–327

    Article  Google Scholar 

  30. Furbank RJ, Morris JF (2004) An experimental study of particle effects on drop formation. Phys Fluids 16(5):1777–1790

    Article  MATH  Google Scholar 

  31. Bechtel SE, Bogy DB, Talke FE (1981) Impact of a liquid drop against a flat surface. IBM J Res Dev 25(6):963–971

    Article  Google Scholar 

  32. Pasandideh-Fard M, Qiao Y, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8(3):650–659

    Article  Google Scholar 

  33. Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10(6):1359–1374

    Article  Google Scholar 

  34. Bhola R, Chandra S (1999) Parameters controlling solidification of molten wax droplets falling on a solid surface. J Mater Sci 34:4883–4894

    Article  Google Scholar 

  35. Attinger D, Zhao Z, Poulikakos D (2000) An experimental study of molten microdroplet surface deposition and solidification: transient behavior and wetting angle dynamics. J Heat Transf 122:544–556

    Article  Google Scholar 

  36. Zhou W, Loney D, Fedorov AG, Degertekin FL, Rosen DW (2013) What controls dynamics of droplet shape evolution upon impingement on a solid surface? AIChE J 59(8):3071–3082

    Article  Google Scholar 

  37. Bussman M, Chandra S, Mostaghimi J (2000) Modeling the splash of a droplet impacting a solid surface. Phys Fluids 12(12):3121–3132

    Article  MATH  Google Scholar 

  38. Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9(11):3172–3187

    Article  Google Scholar 

  39. Orme M, Huang C (1997) Phase change manipulation for droplet-based solid freeform fabrication. J Heat Transfer 119:818–823

    Article  Google Scholar 

  40. Sanders R, Forsyth L, Philbrook K (1996) 3-D Model maker. US Patent 5,506,706

    Google Scholar 

  41. Thayer J, Almquist T, Merot C, Bedal B, Leyden R, Denison K, Stockwell J, Caruso A, Lockard M (2001) Selective deposition modeling system and method. US Patent 6,305,769

    Google Scholar 

  42. Gothait H (2005) System and method for three-dimensional model printing. US Patent 6,850,334

    Google Scholar 

  43. Gothait H (2001) Apparatus and method for three-dimensional model printing. US Patent 6,259,962

    Google Scholar 

  44. Bedal B, Bui V (2002) Method and apparatus for controlling the drop volume in a selective deposition modeling environment. US Patent 6,347,257

    Google Scholar 

  45. Tay B, Evans JRG, Edirisinghe MJ (2003) Solid freeform fabrication of ceramics. Int Mater Rev 48(6):341–370

    Article  Google Scholar 

  46. MicroFab technote 99-01: background on ink-jet technology. http://www.microfab.com/equipment/technotes/technote99-01.pdf. Accessed 19 Mar 2006

  47. Teng W, Edirisinghe MJ (1998) Development of continuous direct ink jet printing of ceramics. Br Ceram Trans 97(4):169–173

    Google Scholar 

  48. Blazdell PF, Evans JRG, Edirisinghe MJ, Shaw P, Binstead M (1995) The computer aided manufacture of ceramics using multilayer jet printing. J Mater Sci Lett 54:1562–1565

    Article  Google Scholar 

  49. Blazdell PF (2003) Solid free-forming of ceramics using a continuous jet printer. J Mater Process Technol 137:49–54

    Article  Google Scholar 

  50. Tseng AA, Lee MH, Zhao B (2001) Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol 123:74–84

    Article  Google Scholar 

  51. Basaran OA (2002) Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J 48(9):1842–1848

    Article  Google Scholar 

  52. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126

    Article  Google Scholar 

  53. Lee E (2002) Microdrop generation. CRC Press, Boca Raton

    Book  Google Scholar 

  54. Percin G, Khuri-Yakub BT (2002) Piezoelectrically actuated flextensional micromachined ultrasound droplet ejectors. IEEE Trans Ultrason Ferroelectr Freq Control 49(6):756–766

    Article  Google Scholar 

  55. Elrod SA, Hadimioglu B, Khuri-Yakub BT, Rawson EG, Richley E, Quate CF (1989) Nozzleless droplet formation with focused acoustic beams. J Appl Phys 65(9):3441–3447

    Article  Google Scholar 

  56. Meacham JM, Ejimofor C, Kumar S, Degertekin FL, Fedorov AG (2004) Micromachined ultrasonic droplet generator based on a liquid horn structure. Rev Sci Instrum 75(5):1347–1352

    Article  Google Scholar 

  57. Meacham JM, Varady M, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17:100605

    Article  MATH  Google Scholar 

  58. Margolin L (2006) Ultrasonic droplet generation jetting technology for additive manufacturing: an initial investigation. MS Thesis, Georgia Institute of Technology

    Google Scholar 

  59. Fukumoto H, Aizawa J, Nakagawa H, Narumiya H (2000) Printing with ink mist ejected by ultrasonic waves. J Imaging Sci Technol 44(5):398–405

    Google Scholar 

  60. Meacham JM, O’Rourke A, Yang Y, Fedorov AG, Degertekin FL, Rosen DW (2010) Experimental characterization of high viscosity droplet ejection. J Manuf Sci E-T ASME 132(3):030905

    Article  Google Scholar 

  61. Sweet R (1964) High-frequency oscillography with electrostatically deflected ink jets. SEL-64-004, SELTR17221. Stanford Electronics Laboratories, Stanford, CA

    Google Scholar 

  62. Munson B, Young D, Okiishi T (1998) Fundamentals of fluid mechanics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  63. Solidscape. T66 Benchtop: product description. http://www.solid-scape.com/t66.html. Accessed 31 July 2006

  64. Stratasys Polyjet Technology. http://stratasys.com/3d-printers/technology/polyjet-technology. Accessed 17 Aug 2013

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gibson, I., Rosen, D., Stucker, B. (2015). Material Jetting. In: Additive Manufacturing Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2113-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2113-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2112-6

  • Online ISBN: 978-1-4939-2113-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics