Skip to main content

Packets of Sequential Neural Activity in Sensory Cortex

  • Chapter
  • First Online:
Analysis and Modeling of Coordinated Multi-neuronal Activity

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 12))

Abstract

Either spontaneously or in response to stimuli, neurons are active in a coordinated fashion. For example, an onset response to sensory stimuli usually evokes a 50–200 ms long burst of population activity. In this chapter, we summarize recent papers of the author showing that such bursts of neuronal activity are not randomly organized, but rather composed of stereotypical sequential spiking patterns. To underline this fine-scale internal organization of such population bursts, we will refer to them as “packets.” It has been shown that packets are ubiquitous feature of spontaneous and stimulus-evoked network activity and are present across different brain states. Although these packets have a generally conserved sequential spiking structure, the exact timing and number of spikes fired by each neuron within a packet can be modified depending on the stimuli. In this chapter, we provide a detailed description of packets, and we discuss how the packet-like organization of neuronal activity may provide an explanation for multiple puzzling observations about neuronal coding. It is interesting to note that organizing population activity into packets resembles how engineers designed information transfer over Internet, where information is divided in small, formatted network packets to increase communication efficiency and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7(5):446–51.

    Article  CAS  PubMed  Google Scholar 

  2. Gomez Palacio Schjetnan A, Luczak A. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat. J Vis Exp. 2011;(56). pii: 3282

    Google Scholar 

  3. Luczak A, Narayanan NS. Spectral representation – analyzing single-unit activity in extracellularly recorded neuronal data without spike sorting. J Neurosci Methods. 2005;144(1):53–61.

    Article  PubMed  Google Scholar 

  4. Harris KD, Bartho P, Chadderton P, Curto C, de la Rocha J, Hollender L, Itskov V, Luczak A, Marguet SL, Renart A, Sakata S. How do neurons work together? Lessons from auditory cortex. Hear Res. 2011;271(1–2):37–53.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Luczak A, Hackett T, Kajikawa Y, Laubach M. Multivariate receptive field mapping in marmoset auditory cortex. J Neurosci Methods. 2004;136(1):77–85.

    Article  PubMed  Google Scholar 

  6. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425:954–6.

    Article  CAS  PubMed  Google Scholar 

  8. Tsodyks M, Kenet T, Grinvald A, Arieli A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science. 1999;286:1943–6.

    Article  CAS  PubMed  Google Scholar 

  9. Luczak A, Barthó P, Harris KD. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron. 2009;62(3):413–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron. 2005;48:811–23.

    Article  CAS  PubMed  Google Scholar 

  11. Buzsaki G. Rhythms of the brain. New York, NY: Oxford University Press; 2009.

    Google Scholar 

  12. Destexhe A, Sejnowski TJ. Thalamocortical assemblies how ion channels, single neurons, and large-scale networks organize sleep oscillations. Oxford: Oxford University Press; 2001.

    Google Scholar 

  13. Battaglia FP, Sutherland GR, McNaughton BL. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem. 2004;11:697–704.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Luczak A, Barthó P, Marguet SL, Buzsáki G, Harris KD. Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci. 2007;104(1):347–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci. 2004;24:6862–70.

    Article  CAS  PubMed  Google Scholar 

  16. Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A. 2003;100:13638–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Steriade M, Contreras D, Curro Dossi R, Nunez A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci. 1993;13:3284–99.

    CAS  PubMed  Google Scholar 

  18. Cossart R, Aronov D, Yuste R. Attractor dynamics of network UP states in the neocortex. Nature. 2003;423:283–8.

    Article  CAS  PubMed  Google Scholar 

  19. Mao BQ, Hamzei-Sichani F, Aronov D, Froemke RC, Yuste R. Dynamics of spontaneous activity in neocortical slices. Neuron. 2001;32:883–98.

    Article  CAS  PubMed  Google Scholar 

  20. Abeles M. Corticonics: neural circuits of the cerebral cortex. Cambridge: Cambridge University Press; 1991.

    Book  Google Scholar 

  21. Baker SN, Lemon RN. Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol. 2000;84:1770–80.

    CAS  PubMed  Google Scholar 

  22. Mokeichev A, Okun M, Barak O, Katz Y, Ben Shahar O, Lampl I. Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron. 2007;53:413–25.

    Article  CAS  PubMed  Google Scholar 

  23. Oram MW, Hatsopoulos NG, Richmond BJ, Donoghue JP. Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. J Neurophysiol. 2001;86:1700–16.

    CAS  PubMed  Google Scholar 

  24. Luczak A, Bartho P, Harris KD. Gating of sensory input by spontaneous cortical activity. J Neurosci. 2013;33(4):1684–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jermakowicz WJ, Chen X, Khaytin I, Bonds AB, Casagrande VA. Relationship between spontaneous and evoked spike-time correlations in primate visual cortex. J Neurophysiol. 2009;101:2279–89.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Berens P. CircStat: a MATLAB toolbox for circular statistics. J Stat Softw. 2009;31:1–21.

    Google Scholar 

  27. Panzeri S, Brunel N, Logothetis NK, Kayser C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 2010;33(3):111.

    Article  CAS  PubMed  Google Scholar 

  28. Luczak A, Barthó P. Consistent sequential activity across diverse forms of UP states under ketamine anesthesia. Eur J Neurosci. 2012;36(6):2830–8.

    Article  PubMed  Google Scholar 

  29. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R. Synfire chains and cortical songs: temporal modules of cortical activity. Science. 2004;304:559–64.

    Article  CAS  PubMed  Google Scholar 

  30. Abeles M, Gerstein GL. Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J Neurophysiol. 1988;60:909–24.

    CAS  PubMed  Google Scholar 

  31. Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M. Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol. 1998;79:2857–74.

    CAS  PubMed  Google Scholar 

  32. Abeles M, Gat I. Detecting precise firing sequences in experimental data. J Neurosci Methods. 2001;107:141–54.

    Article  CAS  PubMed  Google Scholar 

  33. Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ. A new correlation-based measure of spike timing reliability. Neurocomputing. 2003;52–4:925–31.

    Article  Google Scholar 

  34. Churchland MM, et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci. 2010;13:369–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Petersen RS, Panzeri S, Diamond ME. Population coding in somatosensory cortex. Curr Opin Neurobiol. 2002;12:441–7.

    Article  CAS  PubMed  Google Scholar 

  36. Izhikevich EM, Gally JA, Edelman GM. Spike-timing dynamics of neuronal groups. CerebCortex. 2004;14:933–44.

    Google Scholar 

  37. Buonomano DV, Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci. 2009;10:113–25.

    Article  CAS  PubMed  Google Scholar 

  38. Fiete IR, Senn W, Wang CZ, Hahnloser RH. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron. 2010;65:563–76.

    Article  CAS  PubMed  Google Scholar 

  39. Buonomano DV. Timing of neural responses in cortical organotypic slices. Proc Natl Acad Sci U S A. 2003;100:4897–902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Storm JF. K+ channels and their distribution in large cortical pyramidal neurones. J Physiol. 2000;525:565–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu CZ, Huang ZJ, Nelson SB. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci. 2006;9:99–107.

    Article  CAS  PubMed  Google Scholar 

  42. Vervaeke K, Hu H, Graham LJ, Storm JF. Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron. 2006;49:257–70.

    Article  CAS  PubMed  Google Scholar 

  43. Volgushev M, Chauvette S, Mukovski M, Timofeev I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep. J Neurosci. 2006;26(21):5665–72.

    Article  CAS  PubMed  Google Scholar 

  44. Kang S, Kitano K, Fukai T. Structure of spontaneous UP and DOWN transitions self-organizing in a cortical network model. PLoS Comput Biol. 2008;4:e1000022.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 2005;3:e68.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Luczak A, MacLean JN. Default activity patterns at the neocortical microcircuit level. Front Integr Neurosci. 2012;6:30.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Heil P. First-spike latency of auditory neurons revisited. Curr Opin Neurobiol. 2004;14:461–7.

    Article  CAS  PubMed  Google Scholar 

  48. Brasselet R, Panzeri S, Logothetis NK, Kayser C. Neurons with stereotyped and rapid responses provide a reference frame for relative temporal coding in primate auditory cortex. J Neurosci. 2012;32(9):2998–3008.

    Article  CAS  PubMed  Google Scholar 

  49. Hebb DO. The organization of behavior. New York, NY: Wiley; 1949.

    Google Scholar 

  50. Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9.

    Article  CAS  PubMed  Google Scholar 

  51. Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature. 2010;469(7330):397–401.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Euston DR, Tatsuno M, McNaughton BL. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science. 2007;318(5853):1147–50.

    Article  CAS  PubMed  Google Scholar 

  53. Bermudez Contreras EJ, Schjetnan AGP, Muhammad A, Bartho P, McNaughton BL, Kolb B, Gruber A, Luczak A. Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron. 2013;79(3):555–66.

    Article  CAS  PubMed  Google Scholar 

  54. Barthó P, Curto C, Luczak A, Marguet S, Harris KD. Population coding of tone stimuli in auditory cortex: dynamic rate vector analysis. Eur J Neurosci. 2009;30(9):1767–78.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Sugase Y, Yamane S, Ueno S, Kawano K. Global and fine information coded by single neurons in the temporal visual cortex. Nature. 1999;400(6747):869–73.

    Article  CAS  PubMed  Google Scholar 

  56. Lamme VA, Roelfsema PR. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 2000;23(11):571–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Luczak Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luczak, A. (2015). Packets of Sequential Neural Activity in Sensory Cortex. In: Tatsuno, M. (eds) Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Computational Neuroscience, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1969-7_8

Download citation

Publish with us

Policies and ethics