Skip to main content

Off-Line Replay and Hippocampal-Neocortical Interaction

  • Chapter
  • First Online:
Analysis and Modeling of Coordinated Multi-neuronal Activity

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 12))

  • 1669 Accesses

Abstract

This chapter focuses on possible computational functions of hippocampal replay. First, we briefly review essential data and theories on the function of the hippocampus in long-term memory, focusing on its proposed role in memory consolidation. We then describe a combined hippocampal-neocortical model which allows the simultaneous but distinct treatment of episodic and semantic information and study the relationship between hippocampally initiated replay and different aspects (storage, access, and decoding) of long-term declarative memory in the face of representational change. We show that replay may not provide a plausible way to establish in neocortex durable episodic memories which are independent of the hippocampus. We then turn to the question of maintaining access to episodes in the presence of the hippocampus and demonstrate a possible role for replay in this process. Finally, we examine the acquisition, consolidation, and maintenance of general semantic information and compare it with episodic memory. The last part of the chapter describes our recent efforts aimed at the identification, using combined physiological and modeling tools, of cellular and network mechanisms of the generation of hippocampal sharp wave-ripples and associated replay of neuronal activity sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci. 1971;262(841):23–81.

    Article  CAS  PubMed  Google Scholar 

  2. McNaughton BL, Morris RGM. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 1987;10:408–15.

    Article  Google Scholar 

  3. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994;4:374–91.

    Article  CAS  PubMed  Google Scholar 

  4. Hasselmo ME, Schnell E, Barkai E. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci. 1995;15:5249–62.

    CAS  PubMed  Google Scholar 

  5. Alvarez P, Squire LR. Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A. 1994;91(15):7041–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102(3):419–57.

    Article  CAS  PubMed  Google Scholar 

  7. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–5.

    Article  PubMed  Google Scholar 

  8. O’Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford, UK: Clarendon; 1978.

    Google Scholar 

  9. Burgess N, O’Keefe J. Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus. 1996;6:749–62.

    Article  CAS  PubMed  Google Scholar 

  10. Touretzky DS, Redish AD. Theory of rodent navigation based on interacting representations of space. Hippocampus. 1996;6:247–70.

    Article  CAS  PubMed  Google Scholar 

  11. Rudy JW, Sutherland RJ. The hippocampal formation is necessary for rats to learn and remember configural discriminations. Behav Brain Res. 1989;34:97–109.

    Article  CAS  PubMed  Google Scholar 

  12. Gluck MA, Myers CE. Hippocampal mediation of stimulus representation: a computational theory. Hippocampus. 1993;3:491–516.

    Article  CAS  PubMed  Google Scholar 

  13. Redish AD. Beyond the cognitive map: from place cells to episodic memory. Cambridge, Massachusetts: MIT Press; 1999.

    Google Scholar 

  14. Buzsáki G, Moser EI. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci. 2013;16(2):130–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci. 1997;17:5900–20.

    CAS  PubMed  Google Scholar 

  16. Káli S, Dayan P. The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. J Neurosci. 2000;20:7463–77.

    PubMed  Google Scholar 

  17. O’Reilly RC, Rudy JW. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev. 2001;108(2):311–45.

    Article  PubMed  Google Scholar 

  18. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99(2):195–231.

    Article  CAS  PubMed  Google Scholar 

  19. Sutherland RJ, Weisend MP, Mumby D, Astur RS, Hanlon FM, Koerner A, et al. Retrograde amnesia after hippocampal damage: recent vs remote memories in two tasks. Hippocampus. 2001;11(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  20. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Marr D. Vision. New York: W. H. Freeman and Co.; 1982.

    Google Scholar 

  22. Teyler TJ, DiScenna P. The hippocampal memory indexing theory. Behav Neurosci. 1986;100(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  23. Teyler TJ, Rudy JW. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus. 2007;17(12):1158–69.

    Article  PubMed  Google Scholar 

  24. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1(1):1–47.

    Article  CAS  PubMed  Google Scholar 

  25. Lavenex P, Amaral DG. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus. 2000;10(4):420–30.

    Article  CAS  PubMed  Google Scholar 

  26. Wickelgren WA. Chunking and consolidation: a theoretical synthesis of semantic networks, configuring in conditioning, S–R versus cognitive learning, normal forgetting, the amnesic syndrome, and the hippocampal arousal system. Psychol Rev. 1979;86(1):44–60.

    Article  CAS  PubMed  Google Scholar 

  27. Mishkin M. A memory system in the monkey. Philos Trans R Soc Lond B Biol Sci. 1982;298(1089):83–95.

    Article  CAS  PubMed  Google Scholar 

  28. Carpenter GA, Grossberg S. Normal and amnesic learning, recognition and memory by a neural model of cortico-hippocampal interactions. Trends Neurosci. 1993;16(4):131–7.

    Article  CAS  PubMed  Google Scholar 

  29. Squire LR, Cohen NJ, Nadel L. The medial temporal region and memory consolidation: A new hypothesis. In: Weingartner H, Parker E, editors. Memory consolidation. Hillsdale, NJ: Erlbaum; 1984. p. 185–210.

    Google Scholar 

  30. Milner PM. A cell assembly theory of hippocampal amnesia. Neuropsychologia. 1989;27:23–30.

    Article  CAS  PubMed  Google Scholar 

  31. Murre JM. Implicit and explicit memory in amnesia: some explanations and predictions by the TraceLink model. Memory. 1997;5(1–2):213–32.

    Article  CAS  PubMed  Google Scholar 

  32. Pavlides C, Winson J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci. 1989;9(8):2907–18.

    CAS  PubMed  Google Scholar 

  33. Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9.

    Article  CAS  PubMed  Google Scholar 

  34. Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271(5257):1870–3.

    Article  CAS  PubMed  Google Scholar 

  35. Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci. 1999;19:4090–101.

    CAS  PubMed  Google Scholar 

  36. Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29(1):145–56.

    Article  CAS  PubMed  Google Scholar 

  37. Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440(7084):680–3.

    Article  CAS  PubMed  Google Scholar 

  38. Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14(2):147–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Buzsáki G. The hippocampo-neocortical dialogue. Cereb Cortex. 1996;6(2):81–92.

    Article  PubMed  Google Scholar 

  40. Siapas AG, Wilson MA. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron. 1998;21(5):1123–8.

    Article  CAS  PubMed  Google Scholar 

  41. Collins DR, Lang EJ, Paré D. Spontaneous activity of the perirhinal cortex in behaving cats. Neuroscience. 1999;89(4):1025–39.

    Article  CAS  PubMed  Google Scholar 

  42. Qin YL, McNaughton BL, Skaggs WE, Barnes CA. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci. 1997;352(1360):1525–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2007;10(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  44. Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci. 2009;12(7):919–26.

    Article  CAS  PubMed  Google Scholar 

  45. Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31(3):551–70.

    Article  PubMed  Google Scholar 

  46. Hennevin E, Hars B, Maho C, Bloch V. Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res. 1995;69:125–35.

    Article  CAS  PubMed  Google Scholar 

  47. Smith C. Sleep states and memory processes. Behav Brain Res. 1995;69:137–45.

    Article  CAS  PubMed  Google Scholar 

  48. Stickgold R. Sleep: off-line memory reprocessing. Trends Cogn Sci. 1998;2(12):484–92.

    Article  CAS  PubMed  Google Scholar 

  49. Stickgold R, Walker MP. Sleep-dependent memory triage: evolving generalization through selective processing. Nat Neurosci. 2013;16(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  50. Káli S, Dayan P. Replay, repair and consolidation. In: Becker S, Thrun S, Obermayer K, editors. Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT Press; 2003. p. 19–26.

    Google Scholar 

  51. Káli S, Dayan P. Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions. Nat Neurosci. 2004;7(3):286–94.

    Article  PubMed  Google Scholar 

  52. Rao RPN, Olshausen BA, Lewicki MS, editors. Probabilistic Models of the Brain: Perception and Neural Function. Cambridge, MA: MIT Press; 2002.

    Google Scholar 

  53. Hinton G, Sejnowski TJ. Learning and relearning in Boltzmann machines. In: Rumelhart DE, McClelland JL, editors. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations. Cambridge, MA: MIT Press; 1986.

    Google Scholar 

  54. Hinton G, Sejnowski TJ, editors. Unsupervised learning. Cambridge, MA: MIT Press; 1999.

    Google Scholar 

  55. Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002;14:1771–800.

    Article  PubMed  Google Scholar 

  56. Treves A, Rolls ET. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992;2:189–99.

    Article  CAS  PubMed  Google Scholar 

  57. O’Reilly RC, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade- off. Hippocampus. 1994;4:661–82.

    Article  PubMed  Google Scholar 

  58. Hasselmo ME, Wyble BP, Wallenstein GV. Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus. 1996;6:693–708.

    Article  CAS  PubMed  Google Scholar 

  59. Shen B, McNaughton BL. Modeling the spontaneous reactivation of experience-specific hippocampal cell assembles during sleep. Hippocampus. 1996;6:685–92.

    Article  CAS  PubMed  Google Scholar 

  60. Zola-Morgan SM, Squire LR. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 1990;250:288–90.

    Article  CAS  PubMed  Google Scholar 

  61. Cho YH, Kesner RP. Involvement of entorhinal cortex or parietal cortex in long-term spatial discrimination memory in rats: retrograde amnesia. Behav Neurosci. 1996;110:436–42.

    Article  CAS  PubMed  Google Scholar 

  62. Wiig KA, Cooper LN, Bear MF. Temporally graded retrograde amnesia following separate and combined lesions of the perirhinal cortex and fornix in the rat. Learn Mem. 1996;3:313–25.

    Article  CAS  PubMed  Google Scholar 

  63. Anagnostaras SG, Maren S, Fanselow MS. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci. 1999;19:1106–14.

    CAS  PubMed  Google Scholar 

  64. Rempel-Clower NL, Zola SM, Squire LR, Amaral DG. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996;16:5233–55.

    CAS  PubMed  Google Scholar 

  65. Squire LR, Clark RE, Knowlton BJ. Retrograde amnesia. Hippocampus. 2001;11:50–5.

    Article  CAS  PubMed  Google Scholar 

  66. Hamann SB, Squire LR. On the acquisition of new declarative knowledge in amnesia. Behav Neurosci. 1995;109:1027–44.

    Article  CAS  PubMed  Google Scholar 

  67. Kitchener EG, Hodges JR, McCarthy R. Acquisition of post-morbid vocabulary and semantic facts in the absence of episodic memory. Brain. 1998;121(Pt 7):1313–27.

    Article  PubMed  Google Scholar 

  68. Bayley PJ, Squire LR. Medial temporal lobe amnesia: Gradual acquisition of factual information by nondeclarative memory. J Neurosci. 2002;22:5741–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Holdstock JS, Mayes AR, Isaac CL, Gong Q, Roberts N. Differential involvement of the hippocampus and temporal lobe cortices in rapid and slow learning of new semantic information. Neuropsychologia. 2002;40:748–68.

    Article  CAS  PubMed  Google Scholar 

  70. McCloskey M, Cohen NJ. Catastrophic interference in connectionist networks: The sequential learning problem. In: Bower G, editor. The psychology of learning and motivation, vol. 24. New York: Academic; 1989. p. 109–65.

    Google Scholar 

  71. Nadel L, Moscovitch M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol. 1997;7:217–27.

    Article  CAS  PubMed  Google Scholar 

  72. Nadel L, Samsonovich A, Ryan L, Moscovitch M. Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus. 2000;10:352–68.

    Article  CAS  PubMed  Google Scholar 

  73. Glisky EL, Schacter DL, Tulving E. Learning and retention of computer-related vocabulary in memory- impaired patients: method of vanishing cues. J Clin Exp Neuropsychol. 1986;8:292–312.

    Article  CAS  PubMed  Google Scholar 

  74. Tulving E, Hayman CA, Macdonald CA. Long-lasting perceptual priming and semantic learning in amnesia: a case experiment. J Exp Psychol Learn Mem Cogn. 1991;17:595–617.

    Article  CAS  PubMed  Google Scholar 

  75. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Paesschen WV, Mishkin M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science. 1997;277:376–80.

    Article  CAS  PubMed  Google Scholar 

  76. Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci. 2009;29(2):319–27.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Hájos N, Karlócai MR, Németh B, Ulbert I, Monyer H, Szabó G, et al. Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro. J Neurosci. 2013;33(28):11677–91.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Karlócai MR, Kohus Z, Káli S, Ulbert I, Szabó G, Máté Z, et al. Physiological sharp wave-ripples and interictal events in vitro: what’s the difference? Brain. 2014;137(Pt 2):463–85.

    Article  PubMed  Google Scholar 

  79. Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol. 2005;94(5):3637–42.

    Article  PubMed  Google Scholar 

  80. Schlingloff D, Káli S, Freund TF, Hájos N, Gulyas AI. Mechanisms of sharp wave initiation and ripple generation. J Neurosci. 2014; 34(34):11385–98.

    Article  CAS  PubMed  Google Scholar 

  81. Perkel DH, Mulloney B. Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science. 1974;185(4146):181–3.

    Article  CAS  PubMed  Google Scholar 

  82. Brunel N, Wang X-J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol. 2003;90(1):415–30.

    Article  PubMed  Google Scholar 

  83. Geisler C, Brunel N, Wang X-J. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol. 2005;94(6):4344–61.

    Article  PubMed  Google Scholar 

  84. Taxidis J, Coombes S, Mason R, Owen MR. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus. 2012;22(5):995–1017.

    Article  CAS  PubMed  Google Scholar 

  85. Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 1995;373(6515):612–5.

    Article  CAS  PubMed  Google Scholar 

  86. Wang XJ, Buzsáki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci. 1996;16(20):6402–13.

    CAS  PubMed  Google Scholar 

  87. Vida I, Bartos M, Jonas P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 2006;49(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  88. Mann EO, Radcliffe CA, Paulsen O. Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J Physiol Lond. 2005;562(Pt 1):55–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Jensen O, Lisman JE. Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learn Mem. 1996;3(2–3):264–78.

    Article  CAS  PubMed  Google Scholar 

  90. Jensen O, Lisman JE. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn Mem. 1996;3(2–3):279–87.

    Article  CAS  PubMed  Google Scholar 

  91. Levy WB. A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus. 1996;6:579–90.

    Article  CAS  PubMed  Google Scholar 

  92. Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus. 1996;6(3):271–80.

    Article  CAS  PubMed  Google Scholar 

  93. Molter C, Sato N, Yamaguchi Y. Reactivation of behavioral activity during sharp waves: a computational model for two stage hippocampal dynamics. Hippocampus. 2007;17(3):201–9.

    Article  PubMed  Google Scholar 

  94. Memmesheimer R-M. Quantitative prediction of intermittent high-frequency oscillations in neural networks with supralinear dendritic interactions. Proc Natl Acad Sci U S A. 2010;107(24):11092–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Vladimirov N, Tu Y, Traub RD. Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study. Eur J Neurosci. 2013;38(10):3435–47.

    Article  PubMed  Google Scholar 

  96. Grossberg S. Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw. 1988;1:17–61.

    Article  Google Scholar 

  97. Freud S. The archaic features and infantilism of dreams. In: (Translator: Sigmund Freud, James Strachey) Angela Richards (Editor) Introductory lectures on psychoanalysis. New York: Norton; 1966;199–212.

    Google Scholar 

  98. Verfaellie M, Reiss L, Roth HL. Knowledge of New English vocabulary in amnesia: an examination of premorbidly acquired semantic memory. J Int Neuropsychol Soc. 1995;1:443–53.

    Article  CAS  PubMed  Google Scholar 

  99. Haist F, Gore JB, Mao H. Consolidation of human memory over decades revealed by functional magnetic resonance imaging. Nat Neurosci. 2001;4:1139–45.

    Article  CAS  PubMed  Google Scholar 

  100. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, et al. Schemas and memory consolidation. Science. 2007;316(5821):76–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Káli Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Káli, S. (2015). Off-Line Replay and Hippocampal-Neocortical Interaction. In: Tatsuno, M. (eds) Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Computational Neuroscience, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1969-7_15

Download citation

Publish with us

Policies and ethics