Skip to main content

Memory Consolidation, Replay, and Cortico-Hippocampal Interactions

  • Chapter
  • First Online:
Analysis and Modeling of Coordinated Multi-neuronal Activity

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 12))

Abstract

Memory consolidation depends on the exchange of information between the hippocampus and the neocortex. The interaction between these two structures is based on dynamical processes such as oscillations, taking place during active behavior as well as sleep. Memory replay, that is, the reactivation, during sleep or other off-line periods, of the same configurations of neural activity that occurred during experience, is thought to be a key mechanism for memory consolidation. We review here the physiology of cortico-hippocampal interaction during sleep, as well as some results on cortical replay and its relationship with hippocampal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maquet P. The role of sleep in learning and memory. Science. 2001;294(5544):1048–52.

    CAS  PubMed  Google Scholar 

  2. Stickgold R, Walker MP. Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci. 2005;28(8):408–15.

    CAS  PubMed  Google Scholar 

  3. Born J, Rasch B, Gais S. Sleep to remember. Neuroscientist. 2006;12(5):410–24.

    PubMed  Google Scholar 

  4. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62.

    PubMed  Google Scholar 

  5. O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J. Play it again: reactivation of waking experience and memory. Trends Neurosci. 2010;33(5):220–9.

    PubMed  Google Scholar 

  6. Kemp N, Bashir ZI. Long-term depression: a cascade of induction and expression mechanisms. Prog Neurobiol. 2001;65(4):339–65.

    CAS  PubMed  Google Scholar 

  7. Lewis PA, Durrant SJ. Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci. 2011;15(8):343–51.

    PubMed  Google Scholar 

  8. Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci. 2011;34:89–103.

    CAS  PubMed  Google Scholar 

  9. Van Der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, De Rijke W, Van Someren EJ. Sleep benefits subsequent hippocampal functioning. Nat Neurosci. 2009;12(2):122–3.

    Google Scholar 

  10. King C, Henze DA, Leinekugel X, Buzsáki G. Hebbian modification of a hippocampal population pattern in the rat. J Physiol. 1999;521(Pt 1):159–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Rosanova M, Ulrich D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci. 2005;25(41):9398–405.

    CAS  PubMed  Google Scholar 

  12. Chauvette S, Seigneur J, Timofeev I. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron. 2012;75(6):1105–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 1983;287(2):139–71.

    CAS  PubMed  Google Scholar 

  14. Buzsáki G. Hippocampal sharp waves: their origin and significance. Brain Res. 1986;398(2):242–52.

    PubMed  Google Scholar 

  15. Buzsaki G, Haas H, Anderson E. Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Res. 1987;435:331–3.

    CAS  PubMed  Google Scholar 

  16. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;256(5059):1025–7.

    CAS  PubMed  Google Scholar 

  17. Ray S, Maunsell JH. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011;9(4):e1000610.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Buzsáki G, Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98(3):241–9.

    PubMed  Google Scholar 

  19. McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102(3):419–57.

    CAS  PubMed  Google Scholar 

  20. Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51–86.

    PubMed  Google Scholar 

  21. Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6(2):119–30.

    CAS  PubMed  Google Scholar 

  22. Eichenbaum H, Cohen NJ. Memory amnesia and the hippocampal system. Cambridge, MA: MIT Press; 1995.

    Google Scholar 

  23. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):41–50.

    CAS  PubMed  Google Scholar 

  24. Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1–25.

    PubMed  Google Scholar 

  25. McNaughton BL, Barnes CA, Battaglia FP, Bower MR, Cowen SL, Ekstrom AD, et al. Off-line reprocessing of recent memory and its role in memory consolidation: a progress report. In: Maquet P et al., editors. Sleep and brain plasticity. New York: Oxford University Press; 2003. p. 225–46.

    Google Scholar 

  26. Bayley PJ, Gold JJ, Hopkins RO, Squire LR. The neuroanatomy of remote memory. Neuron. 2005;46(5):799–810.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Moscovitch M, Nadel L, Winocur G, Gilboa A, Rosenbaum RS. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol. 2006;16(2):179–90.

    CAS  PubMed  Google Scholar 

  28. Sutherland GR, McNaughton B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol. 2000;10(2):180–6.

    CAS  PubMed  Google Scholar 

  29. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114–26.

    CAS  PubMed  Google Scholar 

  30. Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci. 1971;262(841):23–81.

    CAS  PubMed  Google Scholar 

  31. Marr D. A theory for cerebral neocortex. Proc R Soc Lond B Biol Sci. 1970;176(43):161–234.

    CAS  PubMed  Google Scholar 

  32. McNaughton BL, Morris RGM. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 1987;10(10):408–15.

    Google Scholar 

  33. Buzsaki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31(3):551–70.

    CAS  PubMed  Google Scholar 

  34. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994;4(3):374–91.

    CAS  PubMed  Google Scholar 

  35. Amit DJ. Modeling brain function. Cambridge: Cambridge University Press; 1989.

    Google Scholar 

  36. Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci. 1999;3:351–9.

    PubMed  Google Scholar 

  37. Battaglia FP, Benchenane K, Sirota A, Pennartz CM, Wiener SI. The hippocampus: hub of brain network communication for memory. Trends Cogn Sci. 2011;15(7):310–8.

    PubMed  Google Scholar 

  38. Axmacher N, Helmstaedter C, Elger CE, Fell J. Enhancement of neocortical-medial temporal EEG correlations during non-rem sleep. Neural Plast. 2008;2008:563028.

    PubMed Central  PubMed  Google Scholar 

  39. Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B. Sleep-dependent theta oscillations in the human hippocampus and neocortex. J Neurosci. 2003;23(34):10897–903.

    CAS  PubMed  Google Scholar 

  40. Montgomery SM, Sirota A, Buzsáki G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci. 2008;28(26):6731–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Wierzynski CM, Lubenov EV, Gu M, Siapas AG. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron. 2009;61(4):587–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Steriade M, Contreras D, Amzica F. Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci. 1994;17(5):199–208.

    CAS  PubMed  Google Scholar 

  43. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci. 2004;24(31):6862–70.

    CAS  PubMed  Google Scholar 

  44. Logothetis NK, Eschenko O, Murayama Y, Augath M, Steudel T, Evrard HC, et al. Hippocampal-cortical interaction during periods of subcortical silence. Nature. 2012;491(7425):547–53.

    CAS  PubMed  Google Scholar 

  45. Steriade M, Nuñez A, Amzica F. A novel slow (<1 hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13(8):3252–65.

    CAS  PubMed  Google Scholar 

  46. Destexhe A, Hughes SW, Rudolph M, Crunelli V. Are corticothalamic ‘up’ states fragments of wakefulness? Trends Neurosci. 2007;30(7):334–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci. 2002;22(19):8691–704.

    CAS  PubMed  Google Scholar 

  48. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Potassium model for slow (2–3 hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol. 2004;92(2):1116–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Holcman D, Tsodyks M. The emergence of up and down states in cortical networks. PLoS Comput Biol. 2006;2(3):e23.

    PubMed Central  PubMed  Google Scholar 

  50. Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Nature. 2003;423(6937):288–93.

    CAS  PubMed  Google Scholar 

  51. Luczak A, Barthó P, Marguet SL, Buzsáki G, Harris KD. Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A. 2007;104(1):347–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Peyrache A, Benchenane K, Khamassi M, Wiener SI, Battaglia FP. Sequential reinstatement of neocortical activity during slow oscillations depends on cells’ global activity. Front Syst Neurosci. 2010;3:18.

    PubMed Central  PubMed  Google Scholar 

  53. Lestienne R, Hervé-Minvielle A, Robinson D, Briois L, Sara SJ. Slow oscillations as a probe of the dynamics of the locus coeruleus-frontal cortex interaction in anesthetized rats. J Physiol Paris. 1997;91(6):273–84.

    CAS  PubMed  Google Scholar 

  54. Détári L, Rasmusson DD, Semba K. Phasic relationship between the activity of basal forebrain neurons and cortical EEG in urethane-anesthetized rat. Brain Res. 1997;759(1):112–21.

    PubMed  Google Scholar 

  55. Duque A, Balatoni B, Detari L, Zaborszky L. EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol. 2000;84(3):1627–35.

    CAS  PubMed  Google Scholar 

  56. Destexhe A, Sejnowski TJ. Thalamocortical assemblies: how ion channels, single neurons and large-scale networks organize sleep oscillations. 2001

    Google Scholar 

  57. Amaral DG, Witter MP. Hippocampal formation. In: Paxinos G, editor. The rat nervous system. San Diego: Academic; 1989.

    Google Scholar 

  58. Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsáki G. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron. 2006;52(5):871–82.

    CAS  PubMed  Google Scholar 

  59. Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci. 2008;11(9):1100–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Peyrache A, Dehghani N, Eskandar EN, Madsen JR, Anderson WS, Donoghue JA, et al. Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc Natl Acad Sci U S A. 2012;109(5):1731–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3(12):1237–8.

    CAS  PubMed  Google Scholar 

  62. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003;6(7):697–8.

    CAS  PubMed  Google Scholar 

  63. Peyrache A, Battaglia FP, Destexhe A. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc Natl Acad Sci U S A. 2011;108(41):17207–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Sirota A, Csicsvari J, Buhl D, Buzsáki G. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A. 2003;100(4):2065–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Battaglia FP, Sutherland GR, McNaughton BL. Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J Neurosci. 2004;24(19):4541–50.

    CAS  PubMed  Google Scholar 

  66. Hahn TT, Sakmann B, Mehta MR. Phase-locking of hippocampal interneurons’ membrane potential to neocortical up-down states. Nat Neurosci. 2006;9(11):1359–61.

    CAS  PubMed  Google Scholar 

  67. Hahn TT, Sakmann B, Mehta MR. Differential responses of hippocampal subfields to cortical up-down states. Proc Natl Acad Sci U S A. 2007;104(12):5169–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Henze DA, Wittner L, Buzsaki G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci. 2002;5(8):790–5.

    CAS  PubMed  Google Scholar 

  69. Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci. 1998;18(9):3386–403.

    CAS  PubMed  Google Scholar 

  70. Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsáki G. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron. 2008;60(4):683–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Jay TM, Witter MP. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of phaseolus vulgaris-leucoagglutinin. J Comp Neurol. 1991;313(4):574–86.

    CAS  PubMed  Google Scholar 

  72. Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci. 2009;12(7):919–26.

    CAS  PubMed  Google Scholar 

  73. Lewis BL, O’Donnell P. Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D(1) dopamine receptors. Cereb Cortex. 2000;10(12):1168–75.

    CAS  PubMed  Google Scholar 

  74. Halász P. K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. Sleep Med Rev. 2005;9(5):391–412.

    PubMed  Google Scholar 

  75. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137(4):1087–106.

    CAS  PubMed  Google Scholar 

  76. De Gennaro L, Ferrara M. Sleep spindles: an overview. Sleep Med Rev. 2003;7(5):423–40.

    PubMed  Google Scholar 

  77. Gais S, Mölle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. J Neurosci. 2002;22(15):6830–4.

    CAS  PubMed  Google Scholar 

  78. Schabus M, Gruber G, Parapatics S, Sauter C, Klösch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27(8):1479–85.

    PubMed  Google Scholar 

  79. Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Münch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26(35):8976–82.

    CAS  PubMed  Google Scholar 

  80. Siapas AG, Wilson MA. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron. 1998;21(5):1123–8.

    CAS  PubMed  Google Scholar 

  81. Clemens Z, Mölle M, Ero˝ss L, Jakus R, Rásonyi G, Halász P, Born J. Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur J Neurosci. 2010;33(3):511–20.

    PubMed  Google Scholar 

  82. Contreras D, Timofeev I, Steriade M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol. 1996;494(Pt 1):251–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Dang-Vu TT, Bonjean M, Schabus M, Boly M, Darsaud A, Desseilles M, et al. Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2011;108(37):15438–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res. 2000;886(1–2):208–23.

    CAS  PubMed  Google Scholar 

  85. Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319(5869):1543–6.

    CAS  PubMed  Google Scholar 

  86. Hebb DO. The organization of behavior: a neuropsychological approach. New York: John Wiley & Sons; 1949.

    Google Scholar 

  87. Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G. Organization of cell assemblies in the hippocampus. Nature. 2003;424(6948):552–6.

    CAS  PubMed  Google Scholar 

  88. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron. 2010;66(6):921–36.

    CAS  PubMed  Google Scholar 

  89. Tierney PL, Dégenètais E, Thierry AM, Glowinski J, Gioanni Y. Influence of the hippocampus on interneurons of the rat prefrontal cortex. Eur J Neurosci. 2004;20(2):514–24.

    PubMed  Google Scholar 

  90. Siapas AG, Lubenov EV, Wilson MA. Prefrontal phase locking to hippocampal theta oscillations. Neuron. 2005;46(1):141–51.

    CAS  PubMed  Google Scholar 

  91. Peyrache A, Benchenane K, Khamassi M, Wiener SI, Battaglia FP. Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution. J Comput Neurosci. 2010;29(1–2):309–25.

    PubMed Central  PubMed  Google Scholar 

  92. Johnson LA, Euston DR, Tatsuno M, McNaughton BL. Stored-trace reactivation in rat prefrontal cortex is correlated with down-to-up state fluctuation density. J Neurosci. 2010;30(7):2650–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Plenz D, Thiagarajan TC. The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci. 2007;30:101–10.

    CAS  PubMed  Google Scholar 

  94. Takashima A, Nieuwenhuis ILC, Jensen O, Talamini LM, Rijpkema M, Fernandez G. Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci. 2009;29(32):10087–93.

    CAS  PubMed  Google Scholar 

  95. Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271(5257):1870–3.

    CAS  PubMed  Google Scholar 

  96. Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002;5(2):162–8.

    CAS  PubMed  Google Scholar 

  97. Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci. 2007;27(45):12176–89.

    CAS  PubMed  Google Scholar 

  98. Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440(7084):680–3.

    CAS  PubMed  Google Scholar 

  99. Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009;63(4):497–507.

    CAS  PubMed  Google Scholar 

  100. Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience. Neuron. 2010;65(5):695–705.

    CAS  PubMed  Google Scholar 

  101. Euston DR, Tatsuno M, McNaughton BL. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science. 2007;318(5853):1147–50.

    CAS  PubMed  Google Scholar 

  102. Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2007;10(1):100–7.

    CAS  PubMed  Google Scholar 

  103. Wagner U, Gais S, Haider H, Verleger R, Born J. Sleep inspires insight. Nature. 2004;427(6972):352–5.

    CAS  PubMed  Google Scholar 

  104. Fischer S, Drosopoulos S, Tsen J, Born J. Implicit learning – explicit knowing: a role for sleep in memory system interaction. J Cogn Neurosci. 2006;18(3):311–9.

    PubMed  Google Scholar 

  105. Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP. Human relational memory requires time and sleep. Proc Natl Acad Sci U S A. 2007;104(18):7723–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, et al. Schema-dependent gene activation and memory encoding in neocortex. Science. 2011;333(6044):891–5.

    CAS  PubMed  Google Scholar 

  107. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, et al. Schemas and memory consolidation. Science. 2007;316(5821):76–82.

    CAS  PubMed  Google Scholar 

  108. Battaglia FP, Pennartz CM. The construction of semantic memory: grammar-based representations learned from relational episodic information. Front Comput Neurosci. 2011;5:36.

    PubMed Central  PubMed  Google Scholar 

  109. van Kesteren MT, Fernández G, Norris DG, Hermans EJ. Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A. 2010;107(16):7550–5.

    PubMed Central  PubMed  Google Scholar 

  110. Battaglia FP, Borensztajn G, Bod R. Structured cognition and neural systems: From rats to language. Neurosci Biobehav Rev. 2012;36(7):1626–39.

    PubMed  Google Scholar 

Download references

Acknowledgements

The project ENLIGHTENMENT 284801 (partner: F.P.B.) acknowledges the financial support of the Future and Emerging Technologies (FET) program within the Seventh Framework Program for Research of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco P. Battaglia Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holleman, E., Battaglia, F.P. (2015). Memory Consolidation, Replay, and Cortico-Hippocampal Interactions. In: Tatsuno, M. (eds) Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Computational Neuroscience, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1969-7_10

Download citation

Publish with us

Policies and ethics