Skip to main content

The Olivo-Cerebellar System as a Neural Clock

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

The cerebellum, and the olivo-cerebellar system in particular, may be the central mechanism of a neural clock that provides a rhythmic neural signal used to time motor and cognitive processes. Several independent lines of evidence support this hypothesis. First, the resting membrane potential of neurons in the inferior olive oscillates at ~10 Hz and the neural input from the olive leads to rhythmic complex spikes in cerebellum Purkinje cells. Second, the repeating modular microstructure of the cerebellum is ideally suited for performing computations underlying a basic neural process such as timing. Third, damage to the cerebellum leads to deficits in the perception of time and in the production of timed movements. Fourth, functional imaging studies in human subjects have shown activation of the inferior olive specifically during time perception. However, additional data on the exact role of rhythmic cerebellar activity during basis motor and sensory processing will be necessary before the hypothesis that the cerebellum is a neural clock is more widely accepted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leznik E, Llinas R. Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophysiol. 2005;94(4):2447–56.

    Article  PubMed  Google Scholar 

  2. Flourens P. Rechérches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Paris: Crevot; 1824.

    Google Scholar 

  3. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  4. Snider RS. Recent contributions to the anatomy and physiology of the cerebellum. Arch Neurol Psychiatry. 1950;64(2):196–219.

    Article  PubMed  CAS  Google Scholar 

  5. Woolsey CN. Summary of the papers on the cerebellum. Res Publ Assoc Res Nerv Ment Dis. 1952;30:334–6.

    Google Scholar 

  6. Braitenberg V. Functional interpretation of cerebellar histology. Nature. 1961;190:539–40.

    Article  Google Scholar 

  7. Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.

    Article  PubMed  CAS  Google Scholar 

  8. Llinas R. Eighteenth Bowditch lecture. Motor aspects of cerebellar control. Physiologist. 1974;17:19–46.

    PubMed  CAS  Google Scholar 

  9. Llinas R, Volkind RA. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res. 1973;18:69–87.

    Article  PubMed  CAS  Google Scholar 

  10. Llinas RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience. 2009;162(3):797–804.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.

    Article  PubMed  Google Scholar 

  12. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1(2):136–52.

    Article  PubMed  CAS  Google Scholar 

  13. Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608:179–207. discussion −11.

    Article  PubMed  CAS  Google Scholar 

  14. Crill WE. Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol. 1970;33(2):199–209.

    PubMed  CAS  Google Scholar 

  15. Bell CC, Kawasaki T. Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol. 1972;35(2):155–69.

    PubMed  CAS  Google Scholar 

  16. Szentahothai J, Rajkovits K. Ueber den Ursprung der Kletterfasern des kleinhirns. Z Anat Entwicklungegeschichte. 1959;121:130–41.

    Article  Google Scholar 

  17. Eccles JC, Llinas R, Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol. 1966;182(2):268–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Rushmer DS, Woodward DJ. Responses of Purkinje cells in the frog cerebellum to electrical and natural stimulation. Brain Res. 1971;33(2):315–35.

    Article  PubMed  CAS  Google Scholar 

  19. Llinas R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981;315:549–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Llinas R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol. 1986;376:163–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Sotelo C, Llinas R, Baker R. Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol. 1974;37:541–59.

    PubMed  CAS  Google Scholar 

  22. De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJ, Eisenman LM, Mugnaini E, et al. Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci. 1996;16(10):3412–26.

    PubMed  Google Scholar 

  23. Llinas R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974;37(3):560–71.

    PubMed  CAS  Google Scholar 

  24. Bower JM, Woolston DC. Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol. 1983;49(3):745–66.

    PubMed  CAS  Google Scholar 

  25. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481(7382):502–5.

    Article  CAS  Google Scholar 

  26. Armstrong BD, Harvey RJ. Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J Physiol. 1966;187(3):553–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Llinas R, Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981;315:569–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Lampl I, Yarom Y. Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device. J Neurophysiol. 1993;70(5):2181–6.

    PubMed  CAS  Google Scholar 

  29. Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 2009;62(3):388–99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Lapresle J. Palatal myoclonus. Adv Neurol. 1986;43:265–73.

    PubMed  CAS  Google Scholar 

  31. Deuschl G, Mischke G, Schenck E, Schulte-Monting J, Lucking CH. Symptomatic and essential rhythmic palatal myoclonus. Brain. 1990;113(Pt 6):1645–72.

    Article  PubMed  Google Scholar 

  32. Guillain G, Mollaret P. Deux cas de myoclonies synchrones et rhythmes velopharyngo-laryngo-oculo-diaphragmatiques. Rev Neurol. 1931;2:545–66.

    Google Scholar 

  33. de Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J. Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol. 1989;284(1):12–35.

    Article  PubMed  Google Scholar 

  34. Poirier LJ, Sourkes TL, Bouvier G, Boucher R, Carabin S. Striatal amines, experimental tremor and the effect of harmaline in the monkey. Brain. 1966;89(1):37–52.

    Article  PubMed  CAS  Google Scholar 

  35. Lamarre Y, Mercier LA. Neurophysiological studies of harmaline-induced tremor in the cat. Can J Physiol Pharmacol. 1971;49(12):1049–58.

    Article  PubMed  CAS  Google Scholar 

  36. Louis ED, Faust PL, Vonsattel JP, Honig LS, Rajput A, Robinson CA, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain. 2007;130(Pt 12):3297–307.

    Article  PubMed  Google Scholar 

  37. Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nat Neurosci. 2001;4(3):317–23.

    Article  PubMed  CAS  Google Scholar 

  38. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26(22):5990–5.

    Article  PubMed  CAS  Google Scholar 

  39. Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage. 1997;5(4 Pt 1):261–70.

    Article  PubMed  CAS  Google Scholar 

  40. Bloedel JR, Ebner TJ. Rhythmic discharge of climbing fibre afferents in response to natural peripheral stimuli in the cat. J Physiol. 1984;352:129–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Simpson JI. The accessory optic system. Annu Rev Neurosci. 1984;7:13–41.

    Article  PubMed  CAS  Google Scholar 

  42. Gellman R, Gibson AR, Houk JC. Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol. 1985;54:40–60.

    PubMed  CAS  Google Scholar 

  43. Gibson AR, Horn KM, Pong M. Inhibitory control of olivary discharge. Ann N Y Acad Sci. 2002;978:219–31.

    Article  PubMed  Google Scholar 

  44. Horn KM, Van Kan PL, Gibson AR. Reduction of rostral dorsal accessory olive responses during reaching. J Neurophysiol. 1996;76(6):4140–51.

    PubMed  CAS  Google Scholar 

  45. Liu T, Xu D, Ashe J, Bushara K. Specificity of inferior olive response to stimulus timing. J Neurophysiol. 2008;100(3):1557–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Exp Brain Res. 1986;63(1):81–92.

    Article  PubMed  CAS  Google Scholar 

  47. Welsh JP, Harvey JA. Acute inactivation of the inferior olive blocks associative learning. Eur J Neurosci. 1998;10(11):3321–32.

    Article  PubMed  CAS  Google Scholar 

  48. Chorev E, Yarom Y, Lampl I. Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J Neurosci. 2007;27(19):5043–52.

    Article  PubMed  CAS  Google Scholar 

  49. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, et al. Role of olivary electrical coupling in cerebellar motor learning. Neuron. 2008;58(4):599–612.

    Article  Google Scholar 

  50. Wu X, Ashe J, Bushara KO. Role of olivocerebellar system in timing without awareness. Proc Natl Acad Sci U S A. 2011;108(33):13818–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116(4):961–9.

    Article  PubMed  Google Scholar 

  52. Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, Kolb FP, et al. Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp Brain Res. 2006;170(1):7–21.

    Article  PubMed  CAS  Google Scholar 

  53. Leznik E, Makarenko V, Llinas R. Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci. 2002;22(7):2804–15.

    PubMed  Google Scholar 

  54. Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas R. Self-referential phase reset based on inferior olive oscillator dynamics. Proc Natl Acad Sci U S A. 2004;101(52):18183–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  56. Keating JG, Thach WT. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol. 1995;73(4):1329–40.

    PubMed  CAS  Google Scholar 

  57. Keating JG, Thach WT. No clock signal in the discharge of neurons in the deep cerebellar nuclei. J Neurophysiol. 1997;77(4):2232–4.

    PubMed  CAS  Google Scholar 

  58. Welsh J, Lang E, Sugihara I, Llinas R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374(6521):453–7.

    Article  PubMed  CAS  Google Scholar 

  59. Thier P, Dicke P, Haas R, Barash S. Encoding of movement time by populations of cerebellar Purkinje cells. Nature. 2000;405(6782):72–6.

    Article  PubMed  CAS  Google Scholar 

  60. Kitazawa S, Wolpert DM. Rhythmicity, randomness and synchrony in climbing fiber signals. Trends Neurosci. 2005;28(11):611–9.

    Article  PubMed  CAS  Google Scholar 

  61. Schweighofer N, Doya K, Fukai H, Chiron J, Furukawa T, Kawato M. Chaos may enhance information transmission in the inferior olive. Proc Natl Acad Sci U S A. 2004;101(13):4655–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Ashe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ashe, J., Bushara, K. (2014). The Olivo-Cerebellar System as a Neural Clock. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_9

Download citation

Publish with us

Policies and ethics