Skip to main content

Introduction to the Neurobiology of Interval Timing

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Time is a fundamental variable that organisms must quantify in order to survive. In humans, for example, the gradual development of the sense of duration and rhythm is an essential skill in many facets of social behavior such as speaking, dancing to-, listening to- or playing music, performing a wide variety of sports, and driving a car (Merchant H, Harrington DL, Meck WH. Annu Rev Neurosci. 36:313–36, 2013). During the last 10 years there has been a rapid growth of research on the neural underpinnings of timing in the subsecond and suprasecond scales, using a variety of methodological approaches in the human being, as well as in varied animal and theoretical models. In this introductory chapter we attempt to give a conceptual framework that defines time processing as a family of different phenomena. The brain circuits and neural underpinnings of temporal quantification seem to largely depend on its time scale and the sensorimotor nature of specific behaviors. Therefore, we describe the main time scales and their associated behaviors and show how the perception and execution of timing events in the subsecond and second scales may depend on similar or different neural mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.

    Article  PubMed  CAS  Google Scholar 

  2. Schnupp JWH, Carr CE. On hearing with more than one ear: lessons from evolution. Nat Neurosci. 2009;12(6):692–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Jeffress LA. A place theory of sound localization. J Comp Physiol Psychol. 1948;41(1):35–9.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas JA, Moss CF, Vater M. Echolocation in bats and dolphins. Chicago: University of Chicago Press; 2004.

    Google Scholar 

  5. Simmons JA, Fenton MB, O’Farrell MJ. Echolocation and pursuit of prey by bats. Science. 1979;203(4375):16–21.

    Article  PubMed  CAS  Google Scholar 

  6. O’Neill WE, Suga N. Target range-sensitive neurons in the auditory cortex of the mustache bat. Science. 1979;203(4375):69–73.

    Article  PubMed  Google Scholar 

  7. Wenstrup JJ, Portfors CV. Neural processing of target distance by echolocating bats: functional roles of the auditory midbrain. Neurosci Biobehav Rev. 2011;35(10):2073–83.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Henderson J, Hurly TA, Bateson M, Healy SD. Timing in free-living rufous hummingbirds, Selasphorus rufus. Curr Biol. 2006;16(5):512–5.

    Article  PubMed  CAS  Google Scholar 

  9. Brody CD, Hernández A, Zainos A, Romo R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex. 2003;13(11):1196–207.

    Article  PubMed  Google Scholar 

  10. Bortoletto M, Cook A, Cunnington R. Motor timing and the preparation for sequential actions. Brain Cogn. 2011;75(2):196–204.

    Article  PubMed  Google Scholar 

  11. Sohn M-H, Carlson RA. Implicit temporal tuning of working memory strategy during cognitive skill acquisition. Am J Psychol. 2003;116(2):239–56.

    Article  PubMed  Google Scholar 

  12. Gallistel CR, Gibbon J. Time, rate, and conditioning. Psychol Rev. 2000;107(2):289–344.

    Article  PubMed  CAS  Google Scholar 

  13. Barclay JL, Tsang AH, Oster H. Interaction of central and peripheral clocks in physiological regulation. Prog Brain Res. 2012;199:163–81.

    Article  PubMed  CAS  Google Scholar 

  14. Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci. 2008;31(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  15. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Merchant H, Georgopoulos AP. Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol. 2006;95(1):1–13.

    Article  PubMed  Google Scholar 

  17. Merchant H, Zarco W, Prado L, Pérez O. Behavioral and neurophysiological aspects of target interception. Adv Exp Med Biol. 2009;629:201–20.

    Article  PubMed  Google Scholar 

  18. Merchant H, Zarco W, Bartolo R, Prado L. The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLoS One. 2008;3(9):e3169.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zelaznik HN, Spencer RMC, Ivry RB. Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. J Exp Psychol Hum Percept Perform. 2002;28(3):575–88.

    Article  PubMed  Google Scholar 

  20. Keele SW, Pokorny RA, Corcos DM, Ivry R. Do perception and motor production share common timing mechanisms: a correctional analysis. Acta Psychol (Amst). 1985;60(2–3):173–91.

    Article  CAS  Google Scholar 

  21. Ivry RB, Hazeltine RE. Perception and production of temporal intervals across a range of durations: evidence for a common timing mechanism. J Exp Psychol Hum Percept Perform. 1995;21(1):3–18.

    Article  PubMed  CAS  Google Scholar 

  22. Repp BH, Penel A. Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J Exp Psychol Hum Percept Perform. 2002;28(5):1085–99.

    Article  PubMed  Google Scholar 

  23. Merchant H, Bartolo R, Méndez JC, Pérez O, Zarco W, Mendoza G. What can be inferred from multiple-task psychophysical studies about the mechanisms for temporal processing? In: Vatakis A et al., editors. Multidisciplinary aspects of time and time perception. Heidelberg: Springer; 2011. p. 207–29.

    Chapter  Google Scholar 

  24. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    Article  PubMed  Google Scholar 

  25. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  PubMed  CAS  Google Scholar 

  26. Treisman M, Faulkner A, Naish PL. On the relation between time perception and the timing of motor action: evidence for a temporal oscillator controlling the timing of movement. Q J Exp Psychol A. 1992;45(2):235–63.

    Article  PubMed  CAS  Google Scholar 

  27. Gibbon J, Malapani C, Dale CL, Gallistel C. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7(2):170–84.

    Article  PubMed  CAS  Google Scholar 

  28. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1(2):136–52.

    Article  PubMed  CAS  Google Scholar 

  29. Macar F, Lejeune H, Bonnet M, Ferrara A, Pouthas V, Vidal F, et al. Activation of the supplementary motor area and of attentional networks during temporal processing. Exp Brain Res. 2002;142(4):475–85.

    Article  PubMed  CAS  Google Scholar 

  30. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Buonomano DV, Laje R. Population clocks: motor timing with neural dynamics. Trends Cogn Sci. 2010;14(12):520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Johnston A, Arnold DH, Nishida S. Spatially localized distortions of event time. Curr Biol. 2006;16(5):472–9.

    Article  PubMed  CAS  Google Scholar 

  33. Burr D, Tozzi A, Morrone MC. Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nat Neurosci. 2007;10(4):423–5.

    PubMed  CAS  Google Scholar 

  34. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65.

    Article  PubMed  CAS  Google Scholar 

  35. Coull JT, Nazarian B, Vidal F. Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. J Cogn Neurosci. 2008;20(12):2185–97.

    Article  PubMed  Google Scholar 

  36. Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96.

    Article  PubMed  CAS  Google Scholar 

  37. Merchant H, Zarco W, Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol. 2008;99(2):939–49.

    Article  PubMed  Google Scholar 

  38. Stauffer CC, Haldemann J, Troche SJ, Rammsayer TH. Auditory and visual temporal sensitivity: evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychol Res. 2012;76(1):20–31.

    Article  PubMed  Google Scholar 

  39. Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. Neuroimage. 2010;49(2):1728–40.

    Article  PubMed  Google Scholar 

  40. Fraisse P. Perception and estimation of time. Annu Rev Psychol. 1984;35:1–36.

    Article  PubMed  CAS  Google Scholar 

  41. Aubie B, Sayegh R, Faure PA. Duration tuning across vertebrates. J Neurosci. 2012;32(18):6373–90.

    Article  PubMed  CAS  Google Scholar 

  42. He J, Hashikawa T, Ojima H, Kinouchi Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci. 1997;17(7):2615–25.

    PubMed  CAS  Google Scholar 

  43. Duysens J, Schaafsma SJ, Orban GA. Cortical off response tuning for stimulus duration. Vision Res. 1996;36(20):3243–51.

    Article  PubMed  CAS  Google Scholar 

  44. Wearden JH, Edwards H, Fakhri M, Percival A. Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol B. 1998;51(2):97–120.

    PubMed  CAS  Google Scholar 

  45. Grondin S, Rousseau R. Judging the relative duration of multimodal short empty time intervals. Percept Psychophys. 1991;49(3):245–56.

    Article  PubMed  CAS  Google Scholar 

  46. Grondin S, Meilleur-Wells G, Ouellette C, Macar F. Sensory effects on judgments of short time-intervals. Psychol Res. 1998;61(4):261–8.

    Article  PubMed  CAS  Google Scholar 

  47. Zarco W, Merchant H. Neural temporal codes for representation of information in the nervous system. Cogn Critique. 2009;1:1–30.

    Google Scholar 

  48. Pasalar S, Ro T, Beauchamp MS. TMS of posterior parietal cortex disrupts visual tactile multisensory integration. Eur J Neurosci. 2010;31(10):1783–90.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nath AR, Beauchamp MS. Dynamic changes in superior temporal sulcus connectivity during perception of noisy audiovisual speech. J Neurosci. 2011;31(5):1704–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE. Neural correlates of reliability-based cue weighting during multisensory integration. Nat Neurosci. 2012;15(1):146–54.

    Article  CAS  Google Scholar 

  51. Wright BA, Buonomano DV, Mahncke HW, Merzenich MM. Learning and generalization of auditory temporal-interval discrimination in humans. J Neurosci. 1997;17(10):3956–63.

    PubMed  CAS  Google Scholar 

  52. Karmarkar UR, Buonomano DV. Temporal specificity of perceptual learning in an auditory discrimination task. Learn Mem. 2003;10(2):141–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nagarajan SS, Blake DT, Wright BA, Byl N, Merzenich MM. Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J Neurosci. 1998;18(4):1559–70.

    PubMed  CAS  Google Scholar 

  54. Westheimer G. Discrimination of short time intervals by the human observer. Exp Brain Res. 1999;129(1):121–6.

    Article  PubMed  CAS  Google Scholar 

  55. Meegan DV, Aslin RN, Jacobs RA. Motor timing learned without motor training. Nat Neurosci. 2000;3(9):860–2.

    Article  PubMed  CAS  Google Scholar 

  56. Jantzen KJ, Steinberg FL, Kelso JAS. Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage. 2005;25(4):1031–42.

    Article  PubMed  CAS  Google Scholar 

  57. Schubotz RI, Friederici AD, von Cramon DY. Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage. 2000;11(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  58. Bueti D, Bahrami B, Walsh V. Sensory and association cortex in time perception. J Cogn Neurosci. 2008;20(6):1054–62.

    Article  PubMed  Google Scholar 

  59. Diehl RL, Lotto AJ, Holt LL. Speech perception. Annu Rev Psychol. 2004;55:149–79.

    Article  PubMed  Google Scholar 

  60. Janata P, Grafton ST. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci. 2003;6(7):682–7.

    Article  PubMed  CAS  Google Scholar 

  61. Phillips-Silver J, Trainor LJ. Feeling the beat: movement influences infant rhythm perception. Science. 2005;308(5727):1430.

    Article  PubMed  CAS  Google Scholar 

  62. Bartolo R, Prado L, Merchant H. Information processing in the primate basal ganglia during sensory guided and internally driven rhythmic tapping. J Neurosci. 2014;34(11):3910–3923.

    Article  PubMed  CAS  Google Scholar 

  63. Bartolo R, Merchant H. Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Exp Brain Res. 2009;197(1):91–100.

    Article  PubMed  Google Scholar 

  64. Ivry RB. The representation of temporal information in perception and motor control. Curr Opin Neurobiol. 1996;6(6):851–7.

    Article  PubMed  CAS  Google Scholar 

  65. Drake C, Botte MC. Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Percept Psychophys. 1993;54(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  66. Grondin S. Discriminating time intervals presented in sequences marked by visual signals. Percept Psychophys. 2001;63(7):1214–28.

    Article  PubMed  CAS  Google Scholar 

  67. McAuley JD, Kidd GR. Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences. J Exp Psychol Hum Percept Perform. 1998;24(6):1786–800.

    Article  PubMed  CAS  Google Scholar 

  68. Grondin S, McAuley D. Duration discrimination in crossmodal sequences. Perception. 2009;38(10):1542–59.

    Article  PubMed  Google Scholar 

  69. Harrington DL, Zimbelman JL, Hinton SC, Rao SM. Neural modulation of temporal encoding, maintenance, and decision processes. Cereb Cortex. 2010;20(6):1274–85.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fraisse P. The adaptation of the child to time. In: Friedman WJ, editor. The developmental psychology of time. New York: Academic; 1982. p. 113–40.

    Google Scholar 

  71. Levin I. The development of the concept of time in children: an integrative model. In: Macar F, Pouthas V, Friedman WJ, editors. Time action and cognition. Amsterdam: Springer; 1992. p. 13–32.

    Chapter  Google Scholar 

  72. Wittmann M. The inner experience of time. Philos Trans R Soc Lond B Biol Sci. 2009;364(1525):1955–67.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Droit-Volet S, Rattat A-C. Are time and action dissociated in young children’s time estimation? Cogn Dev. 1999;14(4):573–95.

    Article  Google Scholar 

  74. Gallese V, Keysers C, Rizzolatti G. A unifying view of the basis of social cognition. Trends Cogn Sci. 2004;8(9):396–403.

    Article  PubMed  Google Scholar 

  75. Schubotz RI. Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci. 2007;11(5):211–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luis Prado, Raul Paulín, Edgar Bolaños and Juan Jose Ortiz for their technical assistance. Supported by CONACYT: 151223, 167429, PAPIIT: IN200511, IB200512.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Merchant or Victor de Lafuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merchant, H., de Lafuente, V. (2014). Introduction to the Neurobiology of Interval Timing. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_1

Download citation

Publish with us

Policies and ethics