Skip to main content

Analyzing the Role of Heparan Sulfate Proteoglycans in Axon Guidance In Vivo in Zebrafish

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

One of the most fascinating questions in the field of neurobiology is to understand how neuronal connections are properly formed. During development, neurons extend axons that are guided along defined paths by attractive and repulsive cues to reach their brain target. Most of these guidance factors are regulated by heparan sulfate proteoglycans (HSPGs), a family of cell-surface and extracellular core proteins with attached heparan sulfate (HS) glycosaminoglycans. The unique diversity and structural complexity of HS sugar chains, as well as the variety of core proteins, have been proposed to generate a complex “sugar code” essential for brain wiring. While the functions of HSPGs have been well characterized in C. elegans or Drosophila, relatively little is known about their roles in nervous system development in vertebrates. In this chapter, we describe the advantages and the different methods available to study the roles of HSPGs in axon guidance directly in vivo in zebrafish. We provide protocols for visualizing axons in vivo, including precise dye labeling and time-lapse imaging, and for disturbing the functions of HS-modifying enzymes and core proteins, including morpholino, DNA, or RNA injections.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424

    Article  CAS  PubMed  Google Scholar 

  2. Bennett KL, Bradshaw J, Youngman T, Rodgers J, Greenfield B, Aruffo A, Linsley PS (1997) Deleted in colorectal carcinoma (DCC) binds heparin via its fifth fibronectin type III domain. J Biol Chem 272:26940–26946

    Article  CAS  PubMed  Google Scholar 

  3. Hu H (2001) Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat Neurosci 7:695–701

    Article  Google Scholar 

  4. Ronca F, Andersen JS, Paech V, Margolis RU (2001) Characterization of Slit protein interactions with glypican-1. J Biol Chem 276:29141–29147

    Article  CAS  PubMed  Google Scholar 

  5. Johnson KG, Ghose A, Epstein E, Lincecum J, O'Connor MB, Van Vactor D (2004) Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance. Curr Biol 14:499–504

    Article  CAS  PubMed  Google Scholar 

  6. Zhang F, Ronca F, Linhardt RJ, Margolis RU (2004) Structural determinants of heparan sulfate interactions with slit proteins. Biochem Biophys Res Commun 317:352–357

    Article  CAS  PubMed  Google Scholar 

  7. Hussain SA, Piper M, Fukuhara N, Strochlic L, Cho G, Howitt JA, Ahmed Y, Powell AK, Turnbull JE, Holt CE, Hohenester E (2006) A molecular mechanism for the heparan sulfate dependence of slit-robo signaling. J Biol Chem 281:39693–39698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fukuhara N, Howitt JA, Hussain SA, Hohenester E (2008) Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J Biol Chem 283:16226–16234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Strigini M (2005) Mechanisms of morphogen movement. J Neurobiol 64:324–333

    Article  CAS  PubMed  Google Scholar 

  10. Walz A, McFarlane S, Brickman YG, Nurcombe V, Bartlett PF, Holt CE (1997) Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 124:2421–2430

    CAS  PubMed  Google Scholar 

  11. Irie A, Yates EA, Turnbull JE, Holt CE (2002) Specific heparan sulfate structures involved in retinal axon targeting. Development 129:61–70

    CAS  PubMed  Google Scholar 

  12. Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046

    Article  CAS  PubMed  Google Scholar 

  13. Lee JS, von der Hardt S, Rusch MA, Stringer SE, Stickney HL, Talbot WS, Geisler R, Nusslein-Volhard C, Selleck SB, Chien CB, Roehl H (2004) Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44:947–960

    Article  CAS  PubMed  Google Scholar 

  14. Poulain FE, Chien CB (2013) Proteoglycan-mediated axon degeneration corrects pretarget topographic sorting errors. Neuron 78:49–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wang F, Wolfson SN, Gharib A, Sagasti A (2012) LAR receptor tyrosine phosphatases and HSPGs guide peripheral sensory axons to the skin. Curr Biol 22:373–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bülow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41:723–736

    Article  PubMed  Google Scholar 

  17. Bülow HE, Tjoe N, Townley RA, Didiano D, van Kuppevelt TH, Hobert O (2008) Extracellular sugar modifications provide instructive and cell-specific information for axon-guidance choices. Curr Biol 18:1978–1985

    Article  PubMed Central  PubMed  Google Scholar 

  18. Tecle E, Diaz-Balzac CA, Bülow HE (2013) Distinct 3-O-sulfated heparan sulfate modification patterns are required for kal-1-dependent neurite branching in a context-dependent manner in Caenorhabditis elegans. G3 (Bethesda) 3:541–552

    Article  CAS  Google Scholar 

  19. Gysi S, Rhiner C, Flibotte S, Moerman DG, Hengartner MO (2013) A network of HSPG core proteins and HS modifying enzymes regulates netrin-dependent guidance of D-type motor neurons in Caenorhabditis elegans. PLoS One 8:e74908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Shipp EL, Hsieh-Wilson LC (2007) Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem Biol 14:195–208

    Article  CAS  PubMed  Google Scholar 

  21. Zhang F, Moniz HA, Walcott B, Moremen KW, Linhardt RJ, Wang L (2013) Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans. Biochimie pii:S0300-9084(13)00290-3

    Google Scholar 

  22. Kamimura K, Koyama T, Habuchi H, Ueda R, Masu M, Kimata K, Nakato H (2006) Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 174:773–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dejima K, Takemura M, Nakato E, Peterson J, Hayashi Y, Kinoshita-Toyoda A, Toyoda H, Nakato H (2013) Analysis of Drosophila glucuronyl C-5 epimerase: implications for developmental roles of heparan sulfate sulfation compensation and 2-O sulfated glucuronic acid. J Biol Chem 288:34384–34393

    Google Scholar 

  24. Pratt T, Conway CD, Tian NM, Price DJ, Mason JO (2006) Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J Neurosci 26:6911–6923

    Article  CAS  PubMed  Google Scholar 

  25. Conway CD, Howe KM, Nettleton NK, Price DJ, Mason JO, Pratt T (2011) Heparan sulfate sugar modifications mediate the functions of slits and other factors needed for mouse forebrain commissure development. J Neurosci 31:1955–1970

    Article  CAS  PubMed  Google Scholar 

  26. Steigemann P, Molitor A, Fellert S, Jackle H, Vorbruggen G (2004) Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. Curr Biol 14:225–230

    Article  CAS  PubMed  Google Scholar 

  27. Rhiner C, Gysi S, Frohli E, Hengartner MO, Hajnal A (2005) Syndecan regulates cell migration and axon guidance in C. elegans. Development 132:4621–4633

    Article  CAS  PubMed  Google Scholar 

  28. Smart AD, Course MM, Rawson J, Selleck S, Van Vactor D, Johnson KG (2011) Heparan sulfate proteoglycan specificity during axon pathway formation in the Drosophila embryo. Dev Neurobiol 71:608–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rawson JM, Dimitroff B, Johnson KG, Rawson JM, Ge X, Van Vactor D, Selleck SB (2005) The heparan sulfate proteoglycans Dally-like and Syndecan have distinct functions in axon guidance and visual-system assembly in Drosophila. Curr Biol 15:833–838

    Article  CAS  PubMed  Google Scholar 

  30. Chen RL, Lander AD (2001) Mechanisms underlying preferential assembly of heparan sulfate on glypican-1. J Biol Chem 276:7507–7517

    Article  CAS  PubMed  Google Scholar 

  31. Hienola A, Tumova S, Kulesskiy E, Rauvala H (2006) N-Syndecan deficiency impairs neural migration in brain. J Cell Biol 174:569–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bespalov MM, Sidorova YA, Tumova S, Ahonen-Bishopp A, Magalhães AC, Kulesskiy E, Paveliev M, Rivera C, Rauvala H, Saarma M (2011) Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 192:153–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wilson NH, Stoeckli ET (2013) Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner. Neuron 79:478–491

    Article  CAS  PubMed  Google Scholar 

  34. Hutson LD, Campbell DS, Chien CB (2004) Analyzing axon guidance in the zebrafish retinotectal system. Methods Cell Biol 76:13–35

    Article  PubMed  Google Scholar 

  35. Poulain FE, Gaynes JA, Hörndli C, Law MY, Chien CB (2010) Analyzing retinal axon guidance in zebrafish. Methods Cell Biol 100:3–26

    CAS  PubMed  Google Scholar 

  36. Karlstrom RO, Trowe T, Klostermann S, Baier H, Brand M, Crawford AD, Grunewald B, Haffter P, Hoffmann H, Meyer SU, Muller BK, Richter S, van Eeden FJ, Nusslein-Volhard C, Bonhoeffer F (1996) Zebrafish mutations affecting retinotectal axon pathfinding. Development 123:427–438

    CAS  PubMed  Google Scholar 

  37. Trowe T, Klostermann S, Baier H, Granato M, Crawford AD, Grunewald B, Hoffmann H, Karlstrom RO, Meyer SU, Muller B, Richter S, Nusslein-Volhard C, Bonhoeffer F (1996) Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123:439–450

    CAS  PubMed  Google Scholar 

  38. Clément A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB, Roehl HH (2008) Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 4(7):e1000136

    Article  PubMed Central  PubMed  Google Scholar 

  39. Cadwallader AB, Yost HJ (2006) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family. Dev Dyn 235:3432–3437

    Article  CAS  PubMed  Google Scholar 

  40. Cadwallader AB, Yost HJ (2006) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. Dev Dyn 235:3423–3431

    Article  CAS  PubMed  Google Scholar 

  41. Cadwallader AB, Yost HJ (2007) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases. Dev Dyn 236:581–586

    Article  CAS  PubMed  Google Scholar 

  42. Kramer KL, Barnette JE, Yost HJ (2002) PKCgamma regulates syndecan-2 inside-out signaling during Xenopus left-right development. Cell 111:981–990

    Article  CAS  PubMed  Google Scholar 

  43. Arrington CB, Yost HJ (2009) Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 136:3143–3152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hofmeister W, Devine CA, Key B (2013) Distinct expression patterns of syndecans in the embryonic zebrafish brain. Gene Expr Patterns 13:126–133

    Article  CAS  PubMed  Google Scholar 

  45. Topczewski J, Sepich DS, Myers DC, Walker C, Amores A, Lele Z, Hammerschmidt M, Postlethwait J, Solnica-Krezel L (2001) The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 1:251–264

    Article  CAS  PubMed  Google Scholar 

  46. Gorsi B, Whelan S, Stringer SE (2010) Dynamic expression patterns of 6-O endosulfatases during zebrafish development suggest a subfunctionalisation event for sulf2. Dev Dyn 239:3312–3323

    Article  CAS  PubMed  Google Scholar 

  47. Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, Hong SK, Shin J, Yoo KW, Hibi M, Hirano T, Miki N, Chitnis AB, Huh TL (2000) Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227:279–293

    Article  CAS  PubMed  Google Scholar 

  48. Nasevicius A, Ekker SC (2000) Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26:216–220

    Article  CAS  PubMed  Google Scholar 

  49. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156

    Article  CAS  PubMed  Google Scholar 

  50. Eisen JS, Smith JC (2008) Controlling morpholino experiments: don't stop making antisense. Development 135:1735–1743

    Article  CAS  PubMed  Google Scholar 

  51. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8:e1002861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug Ii RG, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp pii:1115. doi:10.3791/1115

    Google Scholar 

  54. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  55. Trowe T (2000) Analyse von Mutationen mit Einfluss aud die topographische Ordnung von Axonen im retinotektalen System des Zebrabärblings, Danio rerio. Ph.D. thesis, Eberhard-Karls-Universität Tϋbingen

    Google Scholar 

  56. Stacher Hörndli C, Chien CB (2012) Sonic hedgehog is indirectly required for intraretinal axon pathfinding by regulating chemokine expression in the optic stalk. Development 139:2604–2613

    Article  PubMed  Google Scholar 

  57. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41

    Article  CAS  PubMed  Google Scholar 

  58. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099

    Article  CAS  PubMed  Google Scholar 

  59. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6:69–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

F.E. Poulain is supported by a grant from the NINDS (K99-1K99NS083714-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne E. Poulain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Poulain, F.E. (2015). Analyzing the Role of Heparan Sulfate Proteoglycans in Axon Guidance In Vivo in Zebrafish. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics