Skip to main content

Mass Cytometry Analysis of Human T Cell Phenotype and Function

  • Protocol
  • First Online:
Book cover T-Helper Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1193))

Abstract

Mass cytometry is a form of flow cytometry based on single-cell mass spectrometry that uses monoisotopic elemental labels to probe individual cells. Reduced cross talk between channels and an ability to measure >30 independent cellular parameters make this an attractive approach for high-dimensional analysis of cellular phenotypes and function. Here, methods of using this approach for the analysis of human T cell surface markers and intracellular cytokines are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandura DR et al (2009) Mass cytometry technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822

    Article  CAS  PubMed  Google Scholar 

  2. Bendall SC et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3(5):361–368

    Article  CAS  PubMed  Google Scholar 

  4. Bodenmiller B et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30(9):858–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Newell EW et al (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Newell EW et al (2013) Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol 31(7):623–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Newell EW, Lin W (2013) High-dimensional analysis of human CD8 T cell phenotype, function, and antigen specificity. Curr Top Microbiol Immunol 377:67–84

    Google Scholar 

  8. Jabbari A, Harty JT (2006) Simultaneous assessment of antigen-stimulated cytokine production and memory subset composition of memory CD8 T cells. J Immunol Methods 313(1–2):161–168

    Article  CAS  PubMed  Google Scholar 

  9. Betts MR et al (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281(1–2):65–78

    Article  CAS  PubMed  Google Scholar 

  10. Fienberg HG et al (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81(6):467–475

    Article  PubMed  Google Scholar 

  11. Fuss IJ et al (2009) Isolation of whole mononuclear cells from peripheral blood and cord blood. In: Coligan JE et al (eds) Current protocols in immunology. Wiley, New York, NY, Chapter 7: p. Unit7 1

    Google Scholar 

  12. Yokoyama WM, Thompson ML, Ehrhardt RO (2012) Cryopreservation and thawing of cells. In: Coligan JE et al (eds) Current protocols in immunology. Wiley, New York, NY, Appendix 3: p. 3G

    Google Scholar 

  13. Leipold MD, Maecker HT (2012) Mass cytometry: protocol for daily tuning and running cell samples on a CyTOF mass cytometer. J Vis Exp 69:e4398

    PubMed  Google Scholar 

  14. Linderman MD et al (2012) CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data. Bioinformatics 28(18):2400–2401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Qiu P et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Mark Davis, Garry Nolan, and Holden Maecker labs for their contributions of information about mass cytometry theory, usage, and experiences with various monoclonal antibodies leading to the development of this protocol. We also thank the mass cytometry platform users at the Singapore Immunology Network for assistance in validating this method, especially members of the Gennaro De Libero lab. Core funding through the Singapore Immunology Network supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan W. Newell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Newell, E.W., Yun, L.L. (2014). Mass Cytometry Analysis of Human T Cell Phenotype and Function. In: Waisman, A., Becher, B. (eds) T-Helper Cells. Methods in Molecular Biology, vol 1193. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1212-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1212-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1211-7

  • Online ISBN: 978-1-4939-1212-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics