Skip to main content

Probing the Role of the Actin Cytoskeleton During Regulated Exocytosis by Intravital Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

The actin cytoskeleton plays a fundamental role in controlling several steps during regulated exocytosis. Here, we describe a combination of procedures that are aimed at studying the dynamics and the mechanism of the actin cytoskeleton in the salivary glands of live rodents, a model for exocrine secretion. Our approach relies on intravital microscopy, an imaging technique that enables imaging biological events in live animals at a subcellular resolution, and it is complemented by the use of pharmacological agents and indirect immunofluorescence in the salivary tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sollner TH (2003) Regulated exocytosis and SNARE function. Mol Membr Biol 20:209–220

    Article  PubMed  Google Scholar 

  2. Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293

    Article  CAS  PubMed  Google Scholar 

  3. Porat-Shliom N, Milberg O, Masedunskas A, Weigert R (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 70:2099–2121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Eitzen G (2003) Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta 1641:175–181

    Article  CAS  PubMed  Google Scholar 

  5. Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147:983–991

    Article  CAS  PubMed  Google Scholar 

  6. Weigert R, Porat-Shliom N, Amornphimoltham P (2013) Imaging cell biology in live animals: ready for prime time. J Cell Biol 201:969–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Masedunskas A, Sramkova M, Parente L et al (2011) Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy. Proc Natl Acad Sci U S A 108:13552–13557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Masedunskas A, Porat-Shliom N, Weigert R (2012) Regulated exocytosis: novel insights from intravital microscopy. Traffic 13:627–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Riedl J, Flynn KC, Raducanu A et al (2010) Lifeact mice for studying F-actin dynamics. Nat Methods 7:168–169

    Article  CAS  PubMed  Google Scholar 

  10. Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Masedunskas A, Sramkova M, Parente L, Weigert R (2013) Intravital microscopy to image membrane trafficking in live rats. Methods Mol Biol 93:153–167

    Google Scholar 

  12. Masedunskas A, Weigert R (2008) Intravital two-photon microscopy for studying the uptake and trafficking of fluorescently conjugated molecules in live rodents. Traffic 9:1801–1810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Adriaansen J, Perez P, Goldsmith CM, Zheng C, Baum BJ (2008) Differential sorting of human parathyroid hormone after transduction of mouse and rat salivary glands. Human Gene Ther 19:1021–1028

    Article  CAS  Google Scholar 

  14. Kawakami S, Higuchi Y, Hashida M (2008) Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 97:726–745

    Article  CAS  PubMed  Google Scholar 

  15. Aigner A (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol 124:12–25

    Article  CAS  PubMed  Google Scholar 

  16. Masedunskas A, Porat-Shliom N, Tora M, Milberg O, Weigert R (2013) Intravital microscopy for imaging subcellular structures in live mice expressing fluorescent proteins. J Vis Exp (79). doi:10.3791/50558

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute of Dental and Craniofacial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Weigert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Milberg, O., Tora, M., Shitara, A., Takuma, T., Masedunskas, A., Weigert, R. (2014). Probing the Role of the Actin Cytoskeleton During Regulated Exocytosis by Intravital Microscopy. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics