Skip to main content

Isolation and Culture of Primary Mouse Brain Endothelial Cells

  • Protocol
Book cover Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Blood vessels in the central nervous system (CNS) are unique in forming the blood–brain barrier (BBB), which confers high electrical resistance and low permeability properties, thus protecting neural cells from potentially harmful blood components. Endothelial cells, which form the inner cellular lining of all blood vessels, play a critical role in this process by forming tight adhesive interactions between each other. To study the properties of primary brain endothelial cells (BECs), a number of different methods have been described. In this chapter, we present a relatively simple method that produces high numbers of primary mouse BECs that are highly pure (greater than 99 % CD31-positive). In addition, we also describe an immunocytochemical approach to demonstrate the endothelial purity of these cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview structure, regulation and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  2. Brett FM, Mizisin AP, Powell HC, Campbell IL (1995) Evolution of neuropathologic abnormalities associated with blood–brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol 54:766–775

    Article  CAS  PubMed  Google Scholar 

  3. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci 24:719–725

    Article  CAS  PubMed  Google Scholar 

  4. Pardridge WM (2003) Blood–brain barrier drug targetting: the future of brain drug development. Mol Med 3:90–105

    CAS  Google Scholar 

  5. Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier; development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  CAS  PubMed  Google Scholar 

  6. del Zoppo GJ, Milner R (2006) Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 26:1966–1975

    Article  PubMed  Google Scholar 

  7. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Faraci FM (2011) Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol 300:H1566–H1582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation 8:26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Holley JE, Newcombe J, Whatmore JL, Gutowski NJ (2010) Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett 470:65–70

    Article  CAS  PubMed  Google Scholar 

  11. Holman DW, Klein RS, Ransohoff RM (2011) The blood–brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 1812:220–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794–1798

    Article  CAS  PubMed  Google Scholar 

  13. Lin TN, Sun SW, Cheung WM, Chang C (2002) Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischmeia in rats. Evaluation with serial magnetic resonance imaging. Stroke 33:2985–2991

    Article  PubMed  Google Scholar 

  14. Ludwin SK, Henry JM, McFarland HF (2001) Vascular proliferation and angiogenesis in MS: clinical and pathogenic implications. J Neuropathol Exp Neurol 60:505

    Google Scholar 

  15. del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:V73–V81

    Article  Google Scholar 

  16. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathophysiology of ischemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  17. Hamann GF, Okada Y, del Zoppo GJ (1996) Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia. J Cereb Blood Flow Metab 16:1373–1378

    Article  CAS  PubMed  Google Scholar 

  18. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen NV, Chopp M (2000) VEGF enhances angiogenesis and promoted blood–brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. LaManna JC, Kuo NT, Lust WD (1998) Hypoxia-induced brain angiogenesis. Signals and consequences. Adv Exp Med Biol 454:287–293

    Article  CAS  PubMed  Google Scholar 

  20. Milner R, Hung S, Erokwu B, Dore-Duffy P, LaManna JC, del Zoppo GJ (2008) Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Mol Cell Neurosci 38:43–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Persson AB, Buschmann IR (2011) Vascular growth in health and disease. Front Mol Neurosci 4:1–15

    Article  PubMed Central  PubMed  Google Scholar 

  22. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Abbott NJ (2002) Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat 200:629–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Abbruscato T, Davis T (1999) Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: influence of astrocyte contact. Brain Res 842:277–286

    Article  CAS  PubMed  Google Scholar 

  25. Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, Baker D, Adamson P (2003) Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J 17:905–907

    CAS  PubMed  Google Scholar 

  26. Haudenschild CC, Zahniser D, Folkman J, Klagsbrun M (1976) Human vascular endothelial cells in culture. Lack of response to serum growth factors. Exp Cell Res 98:175–183

    Article  CAS  PubMed  Google Scholar 

  27. Milner R, Campbell IL (2002) Developmental regulation of β1 integrins during angiogenesis in the central nervous system. Mol Cell Neurosci 20:616–626

    Article  CAS  PubMed  Google Scholar 

  28. Risau W, Esser S, Engelhardt B (1998) Differentiation of blood–brain barrier endothelial cells. Pathol Biol 46:171–175

    CAS  PubMed  Google Scholar 

  29. Risau W, Hallman R, Albrecht U, Henke-Fahle S (1986) Brain astrocytes induce the expression of an early cell surface marker for blood–brain barrier specific endothelium. EMBO J 5:3179–3183

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Sapatino BV, Welsh CJ, Smith CA, Bebo BF, Linthicum DS (1993) Cloned mouse cerebrovascular endothelial cells that maintain their differentiation markers for factor VIII, low density lipoprotein, and angiotensin-converting enzyme. In Vitro Cell Dev Biol Anim 29:923–928

    Article  Google Scholar 

  31. Wang J, Milner R (2006) Fibronectin promotes brain capillary endothelial cell survival and proliferation through α5β1 and αvβ3 integrins via MAP kinase signaling. J Neurochem 96:148–159

    Article  CAS  PubMed  Google Scholar 

  32. Milner R, Hung S, Wang X, Berg G, Spatz M, del Zoppo G (2008) Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 39:191–197

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Multiple Sclerosis Society; Harry Weaver Neuroscience Scholar Award (R.M.), and Postdoctoral Fellowship (J.V.W.-A.), by the American Heart Association (Western State Affiliate) Postdoctoral Fellowship (A.B.), and by the NIH grant RO1 NS060770.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Welser-Alves, J.V., Boroujerdi, A., Milner, R. (2014). Isolation and Culture of Primary Mouse Brain Endothelial Cells. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_28

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics