Skip to main content

Investigating the Role of Perlecan Domain V in Post-Ischemic Cerebral Angiogenesis

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Cerebral angiogenesis is an important process for physiological events such as brain development, but it also occurs in pathological conditions such as stroke. Defined as the generation of new blood vessels from preexisting vasculature, angiogenesis after ischemic stroke is important to limit the subsequent neuronal injury and death, as well as contribute to neurorepair. However, current therapies for ischemic stroke are largely focused on reestablishing uninterrupted blood flow, an important but inherently risky proposition. Furthermore, these therapies can have limited efficacy due to narrow therapeutic windows, and in the case of mechanical clot removal, are invasive procedures. Therefore, better stroke therapies are needed. Since the brain possesses mechanisms, including angiogenesis, to attempt self-repair after injury, it may prove beneficial to look at how such mechanisms are regulated to identify potential targets for new and improved stroke therapies. Perlecan domain V (DV), an endogenous extracellular matrix protein fragment, may represent one such therapeutic target. Key to its appeal is that perlecan DV is endogenously and persistently generated in the brain after stroke and has significant angio-modulatory properties. These, and other properties, have been therapeutically manipulated to improve experimental stroke outcomes, suggesting that DV could represent a promising new stroke therapy. Here we discuss a novel approach to studying DV-mediated angiogenesis in vitro using a coculture model.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. American Stroke Association (2013). www.strokeassociation.org

  2. Kahle M, Bix G (2013) Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair 27(5):469–478

    Google Scholar 

  3. Kim H, Pawlikowska L, Chen Y, Su H, Yang G, Young W (2009) Brain arteriovenous malformation biology relevant to hemorrhage and implication for therapeutic development. Stroke 40:S95–S97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Davis S, Donnan G (2009) 4.5 hours: the new time window for tissue plasminogen activator in stroke. Stroke 40:2266–2267

    Article  PubMed  Google Scholar 

  5. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma P (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18

    Article  CAS  PubMed  Google Scholar 

  6. Arai K, Lok J, Guo S, Hayakawa K, Xing C, Lo E (2011) Cellular mechanism of neurovascular damage and repair after stroke. J Child Neurol 26(9):1193–1198

    Article  PubMed Central  PubMed  Google Scholar 

  7. Demir R, Ulvi H, Ozel L, Ozdemir G, Guzelcik M, Aygul R (2012) Relationship between plasma metalloproteinase-9 levels and volume and severity of infarct in patients with acute ischemic stroke. Acta Neurol Belg 112:351–356

    Article  PubMed  Google Scholar 

  8. Ramos-Fernandez M, Bellolio M, Stead L (2011) Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systemic review. J Stroke Cerebrovasc Dis 20(1):47–54

    Article  PubMed  Google Scholar 

  9. Sumii T, Lo E (2002) Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 33:831–836

    Article  CAS  PubMed  Google Scholar 

  10. Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S (2003) Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 34:2165–2170

    Article  PubMed  Google Scholar 

  11. Bix G (2013) Perlecan domain V therapy in stroke: a beacon of hope? ACS Chem Neurosci 4(3):370–374

    Google Scholar 

  12. Fan Y, Yang G-Y (2007) Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol 2:284–289

    Article  PubMed  Google Scholar 

  13. Mongiat M, Fu J, Oldershaw R, Greenhalgh R, Gown A, Iozzo R (2003) Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem 278(19):17491–17499

    Article  CAS  PubMed  Google Scholar 

  14. Arikawa-Hirasawa E, Watanbe H, Takami H, Hassell J, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:254–358

    Article  Google Scholar 

  15. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) J Cell Biol 147(5):1109–1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Segev A, Nili N, Strauss B (2004) The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res 63:603–610

    Article  CAS  PubMed  Google Scholar 

  17. Deguchi Y, Okutsu H, Okura T, Yamada S, Kimura R, Yuge T, Furukawa A, Morimoto K, Tachikawa M, Ohtsuki S, Hosoya K, Terasaki T (2002) Internalization of basic fibroblast growth factor at the mouse blood-brain barrier involves perlecan, a heparan sulfate proteoglycan. J Neurochem 83:381–389

    Article  CAS  PubMed  Google Scholar 

  18. Zoeller J, Whitelock J, Iozzo R (2009) Perlecan regulates developmental angiogenesis by modulating to VEGF-VEGFR2 axis. Matrix Biol 28:284–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bix G, Iozzo R (2008) Novel interactions of perlecan: unraveling perlecan’s role in angiogenesis. Microsc Res Tech 71:339–348

    Article  CAS  PubMed  Google Scholar 

  20. Fukuda S, Fini C, Mabuchi T, Koziol J, Eggleston L, de Zoppo G (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gonzalez E, Reed C, Bix G, Fu J, Zhang Y, Gopalakrishnan B, Greenspan D, Iozzo R (2005) BMP-1/tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 280(8):7080–7087

    Article  CAS  PubMed  Google Scholar 

  22. Bix G, Fu J, Gonzalez E, Macro L, Barker A, Campbell S, Zutter M, Santoro S, Kim J, Hook M, Reed C, Iozzo R (2004) Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin. J Cell Biol 166(1):97–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Goyal A, Pal N, Concannon M, Paul M, Doran M, Poluzzi C, Sekiguchi K, Whitelock J, Neill T, Iozzo R (2011) Endorepellin, the angiostatic module of perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2): a duel receptor antagonism. J Biol Chem 286(29):25947–25962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Willis C, Poluzzi C, Mongiat M, Iozzo R (2013) Endorepellin LG 1/2 domains bind Ig3-5 of VEGFR2 and block proangiogenic signaling by VEGFA in endothelial cells. FEBS J 280(10):2271–2284

    Google Scholar 

  25. McGeer P, Zhu S, Dedhar S (1990) Immunostaining of human brain capillaries by antibodies to very late antigens. J Neuroimmunol 26(3):218–231

    Article  Google Scholar 

  26. Milner R, Hung S, Wang X, Berg G, Spatz M, del Zoppo G (2007) Responses to endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 39:191–197

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lee B, Clarke D, Al Ahmad A, Kahle M, Parham C, Auckland L, Shaw C, Fidanboylu M, Orr A, Ogunshola O, Fertala A, Thomas S, Bix G (2011) Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest 121(8):3005–3023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ferrera N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    Article  Google Scholar 

  29. Storkebaum E, Carmeliet P (2004) VEGF: a critical player in neurodegeneration. J Clin Invest 113:14–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Clarke D, Al Ahmad A, Lee B, Parham C, Auckland L, Fertala A, Kahle M, Shaw C, Roberts J, Bix G (2012) Perlecan domain V induces VEGF secretion in brain endothelial cells through integrin αβ51 and ERK-dependent signaling pathways. PLoS One 7(9):e45257

    Google Scholar 

  31. Saini M, Pinteaux E, Lee B, Bix G (2011) Oxygen-glucose deprivation and interleukin-1α trigger the release of perlecan LG3 by cells of neurovascular unit. J Neurochem 119:760–771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Saini M, Bix G (2012) Oxygen-glucose deprivation (OGD) and interleukin-1 (IL-1) differentially modulate cathepsin B/L mediated generation of neuroprotective perlecan LG3 by neurons. Brain Res 1438:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Roberts J, Kahle M, Bix G (2012) Perlecan and the blood-brain barrier: beneficial proteolysis? Front Pharmacol 3:155

    Article  PubMed Central  PubMed  Google Scholar 

  34. Al Ahmad A, Lee B, Saini M, Bix G (2011) Perlecan domain V modulates astrogliosis in vitro and after focal cerebral ischemia through multiple receptors and increased nerve growth factor release. Glia 59:1822–1840

    Article  PubMed  Google Scholar 

  35. Yang R, Bunting S, Ko A, Keyt B, Modi N, Zioncheck T, Ferrara N, Jin H (1998) Substantially attenuated hemodynamic responses to Escherichia coli-derived vascular endothelial growth factor given by intravenous infusion compared with bolus injection. J Pharmacol Exp Ther 284(1):103–110

    CAS  PubMed  Google Scholar 

  36. Bix G, Clark G (1998) Platelet-activating factor receptor stimulation disrupts neuronal migration in vitro. J Neurosci 18:307–318

    CAS  PubMed  Google Scholar 

  37. Sapatino B, Welsh C, Smith C, Bebo B, Linthicum D (1993) Cloned mouse cerebrovascular endothelial cells that maintain their differentiation markers for factor VIII, low density lipoprotein, and angiotensin-converting enzyme. In Vitro Cell Dev Biol 29A:923–928

    Article  CAS  Google Scholar 

  38. Serebriskii I, Castello-Cros R, Lamb A, Golemis E (2008) Fibroblast-derived 3D matrix differentially conditions the growth and drug-responsiveness of human cancer cells. Matrix Biol 27:573–578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marcelo, A., Bix, G. (2014). Investigating the Role of Perlecan Domain V in Post-Ischemic Cerebral Angiogenesis. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_27

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics