Skip to main content

Laser Doppler Flowmetry to Measure Changes in Cerebral Blood Flow

  • Protocol
Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Laser Doppler flowmetry (LDF) is a method by which relative cerebral blood flow (CBF) of the cortex can be measured. Although the method is easy to employ, LDF only measures relative CBF, while absolute CBF cannot be quantified. LDF is useful for investigating CBF changes in a number of different applications including neurovascular and stroke research. This chapter will prepare the reader for rodent experiments using LDF with two preparations. The closed skull preparation can be used to monitor CBF with an intact skull, but in adult rats, thinning of the skull is required to obtain an accurate cortical CBF signal. The open skull preparation requires a craniotomy to expose the surface of the brain and the LDF probe is held close to the surface to measure cerebral perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo [14c] antipyrine. Am J Physiol 234:H59–H66

    CAS  PubMed  Google Scholar 

  2. Bonner R, Nossal R (1981) Model for laser doppler measurements of blood flow in tissue. Appl Opt 20:2097–2107

    Article  CAS  PubMed  Google Scholar 

  3. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58

    Article  CAS  PubMed  Google Scholar 

  4. Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9:589–596

    Article  CAS  PubMed  Google Scholar 

  5. Kiel JW, Riedel GL, DiResta GR, Shepherd AP (1985) Gastric mucosal blood flow measured by laser-doppler velocimetry. Am J Physiol 249:G539–G545

    CAS  PubMed  Google Scholar 

  6. Stern MD, Bowen PD, Parma R, Osgood RW, Bowman RL, Stein JH (1979) Measurement of renal cortical and medullary blood flow by laser-doppler spectroscopy in the rat. Am J Physiol 236:F80–F87

    CAS  PubMed  Google Scholar 

  7. Sundqvist T, Oberg PA, Rapoport SI (1985) Blood flow in rat sciatic nerve during hypotension. Exp Neurol 90:139–148

    Article  CAS  PubMed  Google Scholar 

  8. Jakobsson A, Nilsson GE (1993) Prediction of sampling depth and photon pathlength in laser doppler flowmetry. Med Biol Eng Comput 31:301–307

    Article  CAS  PubMed  Google Scholar 

  9. Chen RL, Nagel S, Papadakis M, Bishop T, Pollard P, Ratcliffe PJ et al (2012) Roles of individual prolyl-4-hydroxylase isoforms in the first 24 hours following transient focal cerebral ischaemia: insights from genetically modified mice. J Physiol 590:4079–4091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Piilgaard H, Lauritzen M (2009) Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J Cereb Blood Flow Metab 29:1517–1527

    Article  CAS  PubMed  Google Scholar 

  11. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lecrux C, Toussay X, Kocharyan A, Fernandes P, Neupane S, Levesque M et al (2011) Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation. J Neurosci 31:9836–9847

    Article  CAS  PubMed  Google Scholar 

  13. Mathiesen C, Caesar K, Thomsen K, Hoogland TM, Witgen BM, Brazhe A et al (2011) Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo. J Neurosci 31:18327–18337

    Article  CAS  PubMed  Google Scholar 

  14. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic, San Diego, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sutherland, B.A., Rabie, T., Buchan, A.M. (2014). Laser Doppler Flowmetry to Measure Changes in Cerebral Blood Flow. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics