Skip to main content

Three Dimensional Vortices in Active Media

  • Chapter
Nonlinear Wave Processes in Excitable Media

Part of the book series: NATO ASI Series ((NSSB,volume 244))

Abstract

A short survey of the results of numerical investigation of the dynamics of 3-D vortices in excitable media on the FitzHugh-Nagumo type model is presented. The computational problems of 3-D numerical experiments are discussed. The dynamics of the scroll ring with an ideal circular and arbitrary untwisted filament, the properties of the twisted scroll wave and twisted scroll ring are considered. In the final section, comparison between the theory and the experiment is done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agladze, K.I., Panfilov, A.V. & Rudenko, A.N. (1988). Nonstationary rotation of spiral waves: three-dimensional effect. Physica 29D, 409–415.

    MathSciNet  Google Scholar 

  2. Agladze, K.I., Kuhnert, L., Linde, H., Krinsky, V.I. & Panfilov, A.V. Three-dimensional vortex with a spiral filament in a chemical active medium. Physica D to appear.

    Google Scholar 

  3. Agladze, K.I., Kocharjan, R.A. & Krinsky, V.I. The direct observation of the collapse of the scroll rings in chemical active medium. Physica D, submitted.

    Google Scholar 

  4. Biktashev, V.N. (1989). Interaction of a 3-D autowave vortex and external waves. Preprint NCBI, Pushchino, 24p.

    Google Scholar 

  5. Braznik, P.K., Davydov, V.A., Zykov, V.S. & Mikhailov, A.S. (1987). Vortex rings in distributed excitable media. ZETP 93, 1725–1736.

    Google Scholar 

  6. Ding da-fu (1988). A plausible mechanism for the motion of untwisted scroll rings in excitable media. Physica 32D, 471–487.

    MATH  MathSciNet  Google Scholar 

  7. Field, R.J., Noyes, R.M. (1974). Oscillations in Chemical Systems, Part 4. Limit Cycle Behavior in a model of a real Chemical reaction. J.Chem. Phys. 60, 1877–1884.

    Article  ADS  Google Scholar 

  8. Jahnke, W., Henze, Ch., Winfree, A.T. (1988). Chemical vortex dynamics in three-dimensional excitable media. Nature 366, 662–665.

    Article  ADS  Google Scholar 

  9. Keener, J.P. & Tyson, J.J. (1988). The motion of untwisted untorted scroll waves in Belousov-Zhabotinsky reagent. Science 239, 1284–1286.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Keener, J.P. (1988). The dynamics of three-dimensional scroll waves in excitable media. Physica 31D, 269–276.

    MATH  MathSciNet  Google Scholar 

  11. Keener, J.P. Knotted Scroll Wave Filaments in Excitable Media. Physica D, in press.

    Google Scholar 

  12. Keener, J.P. Knotted Vortex filament. In press.

    Google Scholar 

  13. Krinsky, V.I. (1984). Autowaves: results, problems, outlooks. In: Self-Organization. Autowaves and Structures Far from Equilibrium, V.I. Krinsky (ed.). Springer-Verlag Heidelberg, 9–19.

    Chapter  Google Scholar 

  14. Medvinsky, A.B. A.V., Panfilov, A.V & Pertsov, A.M. (1984). Properties of rotating waves in three dimensions. Scroll rings in myocard. In Self-Organization. Autowaves and Structures Far from Equilibrium, V.L. Krinsky (ed.). Springer-Verlag Heidelberg, 195–199.

    Chapter  Google Scholar 

  15. Müller, S.C. & Plesser, Th. Dynamics of spiral centers in the ferroin catalyzed Belousov-Zhabotinsky reaction, paper in this volume.

    Google Scholar 

  16. Nandapurkar, P.J. & Winfree, A.T. (1987). A computational study of twisted linked scroll waves in excitable media. Physica 29D, 69–83.

    MATH  MathSciNet  Google Scholar 

  17. Nandapurkar, P.J. & Winfree, A.T. (1989). Dynamical stability of untwisted scroll rings in excitable media. Physica 35D, 277–288.

    MATH  MathSciNet  Google Scholar 

  18. Nicolis, G. & Prigogine, I. (1977). Self-Organization in Non-Equilibrium Systems. Wiley: New York.

    Google Scholar 

  19. Panfilov, A.V. & Pertsov, A.M. (1984). Vortex ring in three-dimensional active medium in reaction-diffusion system. Dokl. AN. SSSR 274, 1500–1503.

    Google Scholar 

  20. Panfilov, A.V., Rudenko, A.N. & Pertsov, A.M. (1984). Twisted scroll waves in three-dimensional active media. Dokl. AN. SSSR 279, 1000–1002.

    Google Scholar 

  21. Panfilov, A.V., Rudenko, A.N. & Pertsov, A.M. (1984). Twisted scroll waves in three-dimensional active media. In Self-Organization. Autowaves and Structures Far from Equilibrium, V.I. Krinsky (ed.). Springer-Verlag: Heidelberg, 103–105.

    Chapter  Google Scholar 

  22. Panfilov, A.V. & Winfree, A.T. (1985). Dynamical simulation of twisted scroll rings in three-dimensional excitable media. Physica 17D, 323–330.

    MathSciNet  Google Scholar 

  23. Panfilov, A.V., Rudenko, A.N. & Winfree, A.T. (1985). Twisted scroll rings in three-dimensional active media. Biofizica 30, 464–466.

    Google Scholar 

  24. Panfilov, A.V., Rudenko, A.N. & Krinsky, V.I. (1986). Scroll rings in three dimensional active medium with two component diffusion. Biofizica 31, 80–854.

    Google Scholar 

  25. Panfilov, A.V. & Rudenko, A.N. (1987). Two regimes of the scroll ring drift in the three-dimensional active media. Physica 28D, 215–218.

    MathSciNet  Google Scholar 

  26. Panfilov, A.V., Aliev, R.R. & Mushinsky, A.V. (1989). An integral invariant for scroll rings in a reaction-diffusion system. Physica 36D, 181–188.

    MATH  MathSciNet  Google Scholar 

  27. Panfilov, A.V. & Rudenko, A.N. Unpublished result.

    Google Scholar 

  28. Panfilov, A.V. & Aliev, R.R. Integral properties of the filament length. Physica D in preparation.

    Google Scholar 

  29. Pertsov, A.M. & Panfilov, A.V. (1981).Spiral waves in active media. Reverberator in the FitzHugh-Nagumo model. In: Autowave processes in Systems with diffusion. Acad. Sci. USSR, Gorky, 77–84.

    Google Scholar 

  30. Pertsov, A.M. & Aliev, R.R. 3D vortices in the gel BZ reaction. Physica D, in preparation.

    Google Scholar 

  31. Welsh, B.J., Gomatam, J. & Burgess, A.E. (1983). Three-dimensional chemical waves in the Belousov-Zhabotinsky reaction. Nature 304, 611–614.

    Article  ADS  Google Scholar 

  32. Winfree, A.T. (1973). Scroll-shaped Waves of Chemical Activity in Three Dimensions. Science 181, 937–939.

    Article  ADS  Google Scholar 

  33. Winfree, A.T. (1974). Rotating chemical reactions. Sci. Amer. 230(6), 82–95.

    Article  Google Scholar 

  34. Winfree, A.T. (1975). Two kinds of waves in an oscillating chemical solution. Faraday Symposia of the Chemical Society No. 9, 38–46.

    Article  Google Scholar 

  35. Winfree, A.T. (1978). Stably rotating patterns of reaction and diffusion. In Periodicities in Chemistry and Biology, Progress in Theoretical Chemistry, Eyring, H., and Henderson, D., (eds.). Academic Press: New York, 4, 1–51.

    Google Scholar 

  36. Winfree, A.T. & Strogatz, S.H. (1983). Singular Filaments Organize Chemical Waves in Three Dimensions: 1. Geometrically Simple Waves. Physica 8D, 35–49.

    MathSciNet  Google Scholar 

  37. Winfree, A.T. & Strogatz, S.H. (1983). Singular Filaments Organize Chemical Waves in Three Dimensions: 2. Twisted Waves. Physica 9D, 65–80.

    MathSciNet  Google Scholar 

  38. Winfree, A.T. & Strogatz, S.H. (1983). Singular Filaments Organize Chemical Waves in Three Dimensions: 3. Knotted Waves. Physica 9D, 333–345.

    MathSciNet  Google Scholar 

  39. Winfree, A.T. & Strogatz, S.H. (1984). Singular Filaments Organize Chemical Waves in Three Dimensions: 4. Wave Taxonomy. Physica 13D, 221–233.

    MathSciNet  Google Scholar 

  40. Winfree, A.T. & Strogatz, S.H. (1984). Organizing centers for three-dimensional chemical waves. Nature 311, 611–615.

    Article  ADS  Google Scholar 

  41. Winfree, A.T. & Guilford, W. (1988). The dynamics of organizing centers: Numerical experiments in differential geometry. In Biomathematics and Related Computational Problems, Ricciardi (ed.). Kluwer Academic Publ.in Biomathematics and Related Computational Problems, 697–716.

    Chapter  Google Scholar 

  42. Winfree, A.T. & Jahnke, W.J. (1989). Three-dimensional scroll ring dynamics in the Belousov-Zhabotinsky reagent and the 2-variable Oregonator model. J. Phys.Chem. 93, 2823–2932.

    Article  Google Scholar 

  43. Yakushevich, L.V. (1984). Vortex filament Elasticity in Active Medium. Studia Biophysica 100, 195–200.

    Google Scholar 

  44. Zykov, V.S. (1984). Modelling of the Wave Processes in Excitable Medium. Nauka: Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panfilov, A.V. (1991). Three Dimensional Vortices in Active Media. In: Holden, A.V., Markus, M., Othmer, H.G. (eds) Nonlinear Wave Processes in Excitable Media. NATO ASI Series, vol 244. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3683-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3683-7_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3685-1

  • Online ISBN: 978-1-4899-3683-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics