Skip to main content

Biochemical Techniques

  • Chapter

Part of the book series: Biotechnology Handbooks ((BTHA,volume 4))

Abstract

A plethora of biochemical techniques have been developed to study fundamental cellular processes of yeasts of the Saccharomyces genera. All of these generally require efficient disruption of the yeast cell followed either by purification of particular classes of macromolecules (e.g., proteins, nucleic acids, ribonucleoprotein complexes) or by partial fractionation of the lysate to yield subfractions that are particularly enriched in some biosynthetic activity, be it a given enzyme or a multicomponent process such as protein synthesis. In this chapter we describe the basic strategies that have been developed for Saccharomyces species (especially S. cerevisiae) for both cell disruption and fractionation, together with consideration of how one radiolabels specific macromolecules in vivo. A detailed account of strategies for subcellular fractionation of yeast cell components—mitochondria, membranes, vacuoles, and so forth—can be found in Chapter 2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achstetter, T., and Wolf, D. H. 1985. Proteinases, proteolysis and biological control in the yeast Saccharomyces cerevisiae, Yeast 1: 139–158.

    PubMed  CAS  Google Scholar 

  • Baan, R. A., Keller, P. B., and Dahlberg, A. E. 1981. Isolation of eukaryotic initiation factor 2 from yeast Saccharomyces cerevisiae, J. Biol. Chem. 256: 1063–1066.

    PubMed  CAS  Google Scholar 

  • Ballou, C. E. 1982. Yeast cell wall and cell surface, In: U. N. Strathern, E. W. Jones, and J. R. Broach, eds., The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 335–360.

    Google Scholar 

  • Banks, G. R. 1973. Mitochondrial DNA synthesis in permeable cells, Nature 245: 196–199.

    CAS  Google Scholar 

  • Bell, L., and Byers, B. 1983. Separation of branched from linear DNA by two-dimensional gel electrophoresis, Anal. Biochem. 130: 527–535.

    PubMed  CAS  Google Scholar 

  • Brewer, B. J., and Fangman, W. L. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae, Cell 51: 463–471.

    PubMed  CAS  Google Scholar 

  • Brunner, S., Dark, F. A., Gerhardt, P., Jeynes, M. H., Kandler, O., Kellenberger, E., Klienberger-Nobel, E., McQuillen, K., Rubio-Huertos, M., Salton, M. R. J., Strange, R. E., Tomcsik, J., and Weibull, C. 1958. Bacterial protoplasts, Nature 181: 1713–1715.

    Google Scholar 

  • Carle, G. F., and Olson, M. V. 1984. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis, Nucleic Acids Res. 12: 5647–5664.

    PubMed  CAS  Google Scholar 

  • Carle, G. F., Frank, M., and Olson, M. V. 1986. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field, Science 232: 65–68.

    PubMed  CAS  Google Scholar 

  • Carnevali, F., Caserta, M., and DiMauro, E. 1982. In vitro transcription by purified RNA polymerase II. Coarse promoter mapping on homologous cloned genes, Nucleic Acids Res. 10: 3195–3209.

    CAS  Google Scholar 

  • Celniker, S. E., and Campbell, J. L. 1982. Yeast DNA replication in vitro: Initiation and elongation events mimic in vivo processes, Cell 51: 203–210.

    Google Scholar 

  • Chan, P. Y., and Cossins, F. A. 1976. General properties and regulation of arginine transporting systems in Saccharomyces cerevisiae, Plant Cell Physiol. 17: 341–349.

    CAS  Google Scholar 

  • Chanda, P. K., and Kung, H-F. 1983. In vitro synthesis of biologically active human leukocyte inteferon in a RNA-dependent system from Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80: 2569–2573.

    CAS  Google Scholar 

  • Chia, L-L., and McLaughlin, C. S. 1979. The half-life of mRNA in Saccharomyces cerevisiae, Mol. Gen. Genet. 170: 137–144.

    PubMed  CAS  Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18: 5294–5299.

    PubMed  CAS  Google Scholar 

  • Chu, G., Vollrath, D., and Davis, R. W. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields, Science 234: 1582–1585.

    PubMed  CAS  Google Scholar 

  • Clare, J. J. 1982. Studies on the regulation of RNA synthesis in the yeast, Saccharomyces cerevisiae. Ph.D. thesis, University of Kent at Canterbury.

    Google Scholar 

  • Clare, J. J., and Oliver, S. G. 1982. The regulation of RNA synthesis in yeast. V. tRNA charging studies, Mol. Gen. Genet. 188: 86–102.

    Google Scholar 

  • Cryer, D. R., Goldthwaite, C. D., Zinker, S., Lam, K.-B., Storm, E., Hirschberg, R., Blamire, J., Finkelstein, D. B., and Marmur, J. 1973. Studies on nuclear and mitochondrial DNA of Saccharomyces cerevisiae, Cold Spring Harb. Symp. Quant. Biol. 38: 17–29.

    Google Scholar 

  • Cryer, D. R., Eccleshall, R., and Marmur, J. 1975. Isolation of yeast DNA, Methods Cell Biol. 12: 39–44.

    PubMed  CAS  Google Scholar 

  • Davis, R. W, Thomas, M., Cameron, J., St. John, T. P., Scherer, S., and Padgett, R. A. 1980. Rapid DNA isolations for enzymatic and hybridisation analysis, Methods Enzymol. 65: 404–411.

    PubMed  CAS  Google Scholar 

  • de Ronde, A., van Loon, A. P. G. M., and Grivell, L. A. 1980. In vitro suppression of UGA codons in a mitochrondrial mRNA, Nature 287:361–363.

    PubMed  Google Scholar 

  • Devenish, R. J., and Newlon, C. S. 1982. Isolation and characterisation of yeast ring chromosome III by a method applicable to other circular DNAs. Gene 18: 277–288.

    PubMed  CAS  Google Scholar 

  • Diaz-Ruiz, J. R., and Kaper, J. M. 1978. Isolation of viral double-stranded RNAs using LiCI fractionation procedure, Prep Biochem. 8: 1–17.

    PubMed  CAS  Google Scholar 

  • Douglas, M., Finkelstein, D., and Butow, R. A. 1979. Analysis of products of mitochondrial protein synthesis in yeast: Genetic and biochemical aspects, Methods Enzymol. 56: 58–66.

    PubMed  CAS  Google Scholar 

  • Eddy, A. A., and Williamson, D. H. 1957. A method of isolating protoplasts from yeast, Nature 179: 1252–1253.

    Google Scholar 

  • Fangman, W. L., Hice, R. H., and Chlebowicz-Sledziewska, E. 1983. ARS replication during the yeast S-phase, Cell 32: 831–838.

    CAS  Google Scholar 

  • Faulhammer, H. G., and Cramer, F. 1977. Tyrosyl-tRNA synthetase from Baker’s yeast: Rapid isolation by affinity elution, molecular weight of the enzyme and determination of sulfhydryl groups, Eur. J. Biochem. 75: 1664–1671.

    Google Scholar 

  • Feinberg, B., and McLaughlin, C. S. 1988. Isolation of yeast mRNA and in vitro translation in a yeast cell-free system, In: I. Campbell and J. H. Duffus, eds., Yeast: A Practical Approach. IRL Press, Oxford, pp. 147–161.

    Google Scholar 

  • Fisher, M. P., and Dingman, C. W. 1971. Role of mr’, cular conformation in determining the electrophoretic properties of polynucleotides in agarose-acrylamide composite gels, Biochemistry 10: 1895–1899.

    PubMed  CAS  Google Scholar 

  • Franklin, R. M. 1966. Purification and properties of the replicative intermediate of the RNA bacteriophase R17, Proc. Natl. Acad. Sci. USA 55: 1504–1511.

    PubMed  CAS  Google Scholar 

  • Gallis, B. M., and Young, E. T. 1975. Endogenous messenger RNA-directed polypeptide chain elongation in a cell-free system from the yeast Saccharomyces cerevisiae, J. Bacteriol. 122: 719–726.

    PubMed  CAS  Google Scholar 

  • Gamper, H., Lehman, H., Piette, J., and Hearst, J. 1985. Purification of DNA using benzoylated naphthoylated DEAE-cellulose, Gene 4: 157–164.

    CAS  Google Scholar 

  • Gardiner, K., Laas, W., and Patterson, D. 1986. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gel electrophoresis, Somatic Cell Genet. 12: 185–195.

    CAS  Google Scholar 

  • Gasior, E., Herrera, F., Sadnik, I., McLaughlin, C. S., and Moldave, K. 1979a. The preparation and characterisation of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid, J. Biol. Chem. 254: 3965–3969.

    PubMed  CAS  Google Scholar 

  • Gasior, E., Herrera, F., McLaughlin, C. S., and Moldave, K. 1979b. The analysis of intermediary reactions involved in protein synthesis, in a cell-free extract of Saccharomyces cerevisiae that translates natural messenger ribonucleic acid, J. Biol. Chem. 254: 3970–3976.

    PubMed  CAS  Google Scholar 

  • Gregory, D. W., Polakis, E. S., and Bartley, W. 1967. The isolation and purification of yeast mitochondria, In: L. Grossman and K. Moldave, eds., Methods in Enzymology, Vol. 12, Academic Press, New York, pp. 469–475.

    Google Scholar 

  • Grivell, A. R., and Jackson, J. F. 1968. Thymidine kinase: Evidence for its absence from Neurospora crassa and some other microorganisms and the relevance of this to the specific labelling of DNA, J. Gen. Microbiol. 54: 307–312.

    PubMed  CAS  Google Scholar 

  • Gross, K. J., and Pogo, O. 1974. Control mechanism of ribonucleic acid synthesis in eukaryotes, J. Biol. Chem. 249: 568–576.

    PubMed  CAS  Google Scholar 

  • Hammond, C. I., and Holland, M. J. 1983. Purification of yeast RNA polymerase using heparin agarose affinity chromatography, J. Biol. Chem, 258: 3230–3241.

    PubMed  CAS  Google Scholar 

  • Hampel, A. E., Enger, M. D., and Ritler, P. E. 1979. Aminoacyl-tRNA synthetases from cultured CHO cells, Methods Enzymol. 59: 229–234.

    PubMed  CAS  Google Scholar 

  • Hartwell, L. H., and McLaughlin, C. S. 1968. Temperature-sensitive mutants of yeast exhibiting a rapid inhibition of protein synthesis, J. Bacteriol. 96: 1664–1671.

    PubMed  CAS  Google Scholar 

  • Hereford, L. M., and Hartwell, L. H. 1971. Defective DNA synthesis in permeabilized yeast mutants, Nature 234: 171–172.

    CAS  Google Scholar 

  • Hofbauer, R., Fessl, F., Hamilton, B., and Ruis, H. 1982. Preparation of an mRNA-dependent cell-free translation system from whole cells of Saccharomyces cerevisiae, Eur. J. Biochem. 122: 199–203.

    PubMed  CAS  Google Scholar 

  • Holland, M. J., Hager, G. L., and Rutter, W. J. 1977. Characterisation of purified poly(adenylic acid)-containing messenger RNA from Saccharomyces cerevisiae, Biochemistry 16: 8–16.

    PubMed  CAS  Google Scholar 

  • Holm, C., Meeks-Wagner, D. W., Fangman, F. L., and Botstein, D. 1986. A rapid, efficient method for isolating DNA from yeast, Gene 42: 169–173.

    PubMed  CAS  Google Scholar 

  • Huberman, J. A., Spotila, L. D., Nawotka, K. A., El-Assouli, S. M., and Davis, L. R. 1987. The in vivo replication origin of the yeast 2µm plasmid, Cell 51: 473–481.

    PubMed  CAS  Google Scholar 

  • Hudspeth, M. E. S., Shumard, D. S., Tatti, K. M., and Grossman, L. I. 1980. Rapid purification of yeast mitochondrial DNA in high yield, Biochem. Biophys. Acta 610: 221–228.

    PubMed  CAS  Google Scholar 

  • Hughes, D. E., Wimpenny, J. W. T., and Lloyd, D. 1971. The disintegration of microorganisms, In: J-R. Norris and D. W. Ribbons, eds., Methods in Microbiology, Vol. 5B, Academic Press, New York, pp. 1–54.

    Google Scholar 

  • Hussain, I., and Leibowitz, M. J. 1986. Translation of homologous and heterologous mRNAs in a yeast cell-free system, Gene 46: 13–23.

    PubMed  CAS  Google Scholar 

  • Hutchison, H. T, and Hartwell, L. H. 1967. Macromolecule synthesis in yeast sphaeroplasts, J. Bacteriol. 94: 1697–1705.

    PubMed  CAS  Google Scholar 

  • Jazwinski, S. M. 1987. Participation of ATP in the binding of a yeast replicative complex to DNA, Biochem. J. 246: 213–219.

    PubMed  CAS  Google Scholar 

  • Jazwinski, S. M., and Edelman, G. M. 1982. Protein complexes from active replication fractions associate in vitro with the replication origins of yeast-2µm DNA plasmid, Proc. Nat. Acad. Sci. USA 79: 3428–3432.

    PubMed  CAS  Google Scholar 

  • Jazwinski, S. M., and Edelman, G. M. 1984. Evidence for the participation of a multipro- tein complex in yeast DNA replication in vitro, J. Biol. Chem. 259: 6852–6857.

    PubMed  CAS  Google Scholar 

  • Jazwinski, S. M., Niedzwiecka, A., and Edelman, G. M. 1983. In vitro association of a replication complex with a yeast chromosomal replicator, J. Biol. Chem. 258: 2754–2757.

    CAS  Google Scholar 

  • Jong, A. Y. S., and Scott, J. F. 1985. DNA synthesis in yeast cell-free extracts dependent on recombinant plasmid purified from Escherichia coli, Nucleic Acids Res. 13: 2943–2949.

    PubMed  CAS  Google Scholar 

  • Jong, A. Y. S., Kuo, C-L., and Campbell, J. L. 1984. The CDC8 gene of yeast encodes thymidylate kinase, J. Biol. Chem. 259: 11052–11059.

    PubMed  CAS  Google Scholar 

  • Kandel, J. 1979. Isolation and detection of double-stranded RNA from fungi, Methods Enzymol. 60: 549–554.

    PubMed  CAS  Google Scholar 

  • Kassovetis, G. A., Riggs, D. L., Negri, R., Nguayen, L., and Geiduschek, E. P. 1989. Transcription factor III B generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes, Mol. Cell Biol. 9: 2551–2566.

    Google Scholar 

  • Kirby, K. S. 1965. Isolation and characterization of ribosomal ribonucleic acid, Biochem. J. 96: 266–269.

    PubMed  CAS  Google Scholar 

  • Kitamura, K., and Yamamoti, Y. 1972. Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells, Arch. Biochem. Biophys. 153: 403–406.

    PubMed  CAS  Google Scholar 

  • Klekamp, M. S., and Weil, P. A. 1982. Specific transcription of homologous class III genes in yeast soluble cell-free extracts, J. Biol. Chem. 257: 8432–8441.

    PubMed  CAS  Google Scholar 

  • Klootwijk, J., Verbeet, M.Ph., Veldmann, G. M., deRegt, V. C. H. F., van Heerikhuizen, H., Bogerd, J., and Planta, R. J. 1984. The in vivo and in vitro initiation site for transcription of the RNA operon of Saccharomyces carlsbergensis, Nucleic Acids Res. 12: 1377–1390.

    PubMed  CAS  Google Scholar 

  • Koch, H., and Friesen, J. D. 1979. Individual messenger RNA half lives in Saccharomyces cerevisiae, Mol. Gen. Genet. 170: 129–135.

    PubMed  CAS  Google Scholar 

  • Kojo, H., Greenberg, B. D., and Sugino, A., 1978, Yeast 2µm plasmid replication in vitro: Origin and direction, Proc. Natl. Acad. Sci. USA 78: 7261–7265.

    Google Scholar 

  • Kornberg, A. 1980. DNA Replication, W. H. Freeman, San Francisco.

    Google Scholar 

  • Kreutzfeldt, C., and Lochmann, E-R. 1983. Preparation of a cell-free extract from yeast that is active in protein synthesis, FEMS Microbiol. Lett. 16: 179–182.

    CAS  Google Scholar 

  • Kuo, C-L., and Campbell, J. L. 1982. Purification of the cdc8 protein of Saccharomyces cerevisiae by complementation in an aphidocolin-sensitive in vitro DNA replication system, Proc. Natl. Acad. Sci. USA 79: 4243–4247.

    PubMed  CAS  Google Scholar 

  • Kuo, S-C., and Yamamoto, S. 1975. Preparation and growth of yeast protoplasts, Methods Cell Biol. 11: 169–183.

    PubMed  CAS  Google Scholar 

  • Lang, B., Burger, G., Doxiadis, I., Thomas, D. Y., Bandlow, W., and Kaudewitz, F. 1977. A simple method for the large scale preparation of mitochondria from microorganisms, Anal. Biochem. 77: 110–121.

    PubMed  CAS  Google Scholar 

  • Littlewood, R., Shaffer, B., and Davies, J. 1971. Mutants of Saccharomyces cerevisiae with reduced levels of ribonuclease activity, Genetics 68: 39.

    Google Scholar 

  • Lohr, D., and Ide, G. I. 1983. In vitro initiation and termination of ribosomal RNA transcription in isolated yeast nuclei, J. Biol. Chem. 258: 4668–4671.

    PubMed  CAS  Google Scholar 

  • Lue, N. F., and Kornberg, R. D. 1987. Accurate initiation at RNA polymerase II promoters in extracts from Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 84:8839–8843.

    PubMed  CAS  Google Scholar 

  • Lumpkin, O. J., and Zimm, B. H. 1982. Mobility of DNA in gel electrophoresis, Biopolymers 11: 2315–2316.

    Google Scholar 

  • Masurekar, N., Palmer, E., Ono, B-I., Wilhelm, J. M., and Sherman, F. 1981. Misreading of the ribosomal suppressor SUP46 is due to an altered 40S subunit in yeast, J Mol. Biol. 147: 381–390.

    PubMed  CAS  Google Scholar 

  • McKee, E. E., and Poyton, R. O. 1984. Mitochondria) gene expression in Saccharomyces cerevisiae. I. Optimal conditions for protein synthesis in isolated mitochondria, J. Biol. Chem. 259: 9320–9331.

    PubMed  CAS  Google Scholar 

  • McKee, E. E., McEwen, J. E., and Poyton, R. O. 1984. Mitochondria) gene expression in Saccharomyces cerevisiae. II. Fidelity of translation in isolated mitochondria from wild type and respiratory-deficient mutant cells, J. Biol. Chem. 259: 9332–9336.

    PubMed  CAS  Google Scholar 

  • McLaughlin, C. S., Warner, J. R., Edmonds, M., Nakazato, H., and Vaughan, M. H. 1973. Polyadenylic acid sequences in yeast messenger RNA, J. Biol. Chem. 248: 1466–1471.

    PubMed  CAS  Google Scholar 

  • Miller, M. J., Xuong, N., and Geiduschek, E. P. 1979. A response of protein synthesis to a temperature shift in the yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 76: 5222–5225.

    PubMed  CAS  Google Scholar 

  • Mills, D. 1974. Isolation of polyribosomes from yeast during sporulation and vegative growth, Appl. Microbiol. 27: 944–948.

    PubMed  CAS  Google Scholar 

  • Mitchell, D. J., and Bevan, E. A. 1987. dsRNA killer systems in yeast, In: D. R. Berry, I. Russell, and G. G. Stewart, eds., Yeast Biotechnology. Allen and Unwin, London, pp. 104–155.

    Google Scholar 

  • Moldave, K., and McLaughlin, C. S. 1988. The analysis of temperature-sensitive mutants of Saccharomyces cerevisiae altered in components required for protein synthesis, In: M. F. Tuite, M. Picard, and M. BolotinFukuhara, eds., Genetics of Translation: New Approaches. Springer-Verlag, Berlin, pp. 271–282.

    Google Scholar 

  • Monier, R., Stephenson, M. L., and Zamechnik, P. C. 1960. The preparation and some properties of a low molecular weight ribonucleic acid from baker’s yeast, Biochim. Biophys. Acta 43: 1–8.

    PubMed  CAS  Google Scholar 

  • Newlon, C. S., Devenish, R. J., Suci, P. A., and Roffi, C. J. 1981. Replication of small chromosomal DNAs in yeast, ICN-UCLA Symp. Mol. Biol. 22: 501–516.

    CAS  Google Scholar 

  • Oliver, S. G., McCready, S. J., Holm, C., Sutherland, P., McLaughlin, C. S., and Cox, B. S. 1977. Biochemical and physiological studies of the yeast virus-like particle, J. Bacteriol. 130: 1303–1309.

    PubMed  CAS  Google Scholar 

  • Oppenheim, A. 1981. Separation of closed circular DNA from linear DNA by electrophoresis in two dimensions in agarose gels, Nucleic Acids Res. 9: 6805–6812.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., and Jackson, R. J. 1976. An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 67: 247–256.

    PubMed  CAS  Google Scholar 

  • Peppler, H. J. 1979. Production of yeasts and yeast products, In: H. J. Peppler and D. Perlman, eds., Microbial Technology, 2nd ed., Vol. 1, Academic Press, New York, pp. 157–185.

    Google Scholar 

  • Pfisterer, J., and Buetow, D. E. 1981. In vitro reconstitution of the mitochondrial translation system of yeast, Proc. Natl. Acad. Sci. USA 78: 4917–4921.

    CAS  Google Scholar 

  • Plesset, J., Foy, J. J., Chia, L. L., and McLaughlin, C. S. 1982. Heat shock in Saccharomyces cerevisiae: Quantitation of transcriptional and translational effects, In: M. Grunberg-Manago and B. Safer, eds., Transcription/Translational Regulation of Gene Expression. Elsevier, New York, pp. 495–514.

    Google Scholar 

  • Pringle, J. R. 1975. Methods for avoiding proteolytic artefacts in studies of enzymes and other proteins from yeasts, Methods Cell Biol. 12: 149–184.

    PubMed  CAS  Google Scholar 

  • Radloff, R., Bauer, W., and Vinograd, J. 1967. A dye-buoyant density method for the detection and isolation of closed circular duplex DNA: The closed circular DNA in HeLa cells, Proc. Natl. Acad. Sci. USA 57: 1514–1521.

    PubMed  CAS  Google Scholar 

  • Retel, J., Van den Bos, R. C., and Planta, R. J. 1969. Characteristics of the methylation in vivo of ribosomal RNA in yeast, Biochim. Biophys. Acta 195: 370–380.

    PubMed  CAS  Google Scholar 

  • Rothblatt, J. A., and Meyer, D. I. 1986. Secretion in yeast: Reconstitution of the translocation and glycosylation of a-factor and invertase in a homologous cell-free system, Cell 44: 619–628.

    PubMed  CAS  Google Scholar 

  • Rubin, G. M. 1975. Preparation of RNA and ribosomes from yeast, Methods Cell Biol. 12: 45–64.

    PubMed  CAS  Google Scholar 

  • Sawadago, M., Sentenac, A., and Fromageot, P. 1981. In vitro transcription of cloned yeast ribosomal DNA by yeast RNA polymerase A, Biochem. Biophys. Res. Commun. 101: 250–257.

    Google Scholar 

  • Schantz, G. 1967. Stable phosphorylating submitochondrial particles from baker’s yeast, Methods Enzymol. 10: 197–202.

    Google Scholar 

  • Schindler, D., Grant, P. G., and Davies, J. E. 1974. Trichodermin resistance-mutation affecting eukaryotic ribosomes, Nature 248: 535–536.

    PubMed  CAS  Google Scholar 

  • Schmidt, G. 1968. Periodate oxidation of ribonucleic acids and their derivatives, Methods Enzymol. 12B: 230–235.

    CAS  Google Scholar 

  • Schwartz, D. C., and Cantor, C. R. 1984. Separation of yeast chromosome-sized DNAs by pulse field gradient gel electrophoresis, Cell 37: 67–75.

    PubMed  CAS  Google Scholar 

  • Scopes, R. K. 1982. Protein Purification: Principles and Practice, Springer, New York.

    Google Scholar 

  • Scott, J. H., and Schekman, R. 1980. Lyticase: Endoglucanase and protease activities that act together in yeast cell lysis, J. Bacteriol. 142: 414–423.

    PubMed  CAS  Google Scholar 

  • Serwer, P., and Hayes, S. J. 1986. Exclusion of spheres by agarose gels during agarose gel electrophoresis: Dependence on the sphere’s radius and the gel’s concentration, Anal. Biochem. 158: 72–78.

    PubMed  CAS  Google Scholar 

  • Shalitin, C., and Vishlizky, A. 1984. An improved isolation procedure for yeast two-micrometer minichromosomes, Current Genet. 9: 107–111.

    CAS  Google Scholar 

  • Shalitin, C., Pan, C. J., and Davie, J. R. 1983. Isolation of 2µm minichromosomes from Saccharomyces cerevisiae using shallow metrizamide gradients, Exp. Mycol. 7: 175–181.

    CAS  Google Scholar 

  • Sissons, C. H. 1978. Methods for yeast protein synthesis in a cell-free system, Methods Cell Biol. 20: 83–99.

    PubMed  CAS  Google Scholar 

  • Skogerson, L., and Wakatama, E. 1976. A ribosome-dependent GTPase from yeast distinct from elongation factor 2, Proc. Natl. Acad. Sci. USA 73: 73–76.

    PubMed  CAS  Google Scholar 

  • Sogin, S. J., and Saunders, C. A. 1980. Fluctuation in polyadenylate size and content in exponential-and stationary-phase cells of Saccharomyces cerevisiae, J. Bacteriol. 144: 74–81.

    PubMed  CAS  Google Scholar 

  • Sogin, S. J., Haber, J. E., and Halvorson, H. O. 1972. Relationship between sporulation-specific 20S ribonucleic acid and ribosomal ribonucleic acid processing in Saccharomyces cerevisiae, J. Bacteriol. 112: 806–814.

    PubMed  CAS  Google Scholar 

  • Sommer, A., and Lewis, M. J. 1971. Effect of dithiothreitol on yeast: Sphaeroplast formation and invertase release, J. Gen. Microbiol. 68: 327–335.

    Google Scholar 

  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 503–517.

    PubMed  CAS  Google Scholar 

  • Southern, E. M., Anand, R., and Fletcher, D. S. 1987. A model for the separation of large DNA molecules by crossed field gel electrophoresis, Nucleic Acids Res. 15: 5925–5943.

    PubMed  CAS  Google Scholar 

  • Specht, C. A., Di Russo, C. C., Novotny, C. P., and Ullrich, R. C. 1982. A method for extracting high molecular weight DNA from fungi, Anal. Biochem. 119: 158–163.

    PubMed  CAS  Google Scholar 

  • Sripati, C. E., and Warner, J. R. 1978. Isolation, characterisation and translation of mRNA from yeast, Methods Cell Biol. 20: 61–81.

    PubMed  CAS  Google Scholar 

  • Sripati, C. E., Groner, Y., and Warner, J. R. 1976. Methylated blocked 5’termini of yeast mRNA, J. Biol. Chem. 251: 2898–2904.

    PubMed  CAS  Google Scholar 

  • Strathern, J. N., Newlon, C. S., Herskowitz, I., and Hicks, J. B. 1979. Isolation of a circular’ derivative of yeast chromosome. III. Implications for the mechanism of mating type interconversion, Cell 18: 309–319.

    PubMed  CAS  Google Scholar 

  • Swanson, M. E., and Holland, M. J. 1983. RNA polymerase I-dependent selective transcription of yeast ribosomal DNA, J. Biol. Chem. 258: 3242–3250.

    PubMed  CAS  Google Scholar 

  • Szczesna, E., and Filipowicz, W. 1980. Faithful and efficient translation of viral and cellular eukaryotic mRNAs in a cell-free S-27 extract of Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun, 92: 563–569.

    PubMed  CAS  Google Scholar 

  • Tuite, M. F., and Plesset, J. 1986. mRNA-dependent yeast cell-free translation systems: Theory and practice, Yeast 2: 35–52.

    Google Scholar 

  • Tuite, M. F., Plesset, J., Moldave, K., and McLaughlin, C. S. 1980. Faithful and efficient translation of homologous and heterologous mRNAs in an mRNA-dependent cell-free system from Saccharomyces cerevisiae, J. Biol. Chem. 255: 8761–8766.

    PubMed  CAS  Google Scholar 

  • Tuite, M. F., Cox, B. S., and McLaughlin, C. S. 1981. An homologous in vitro assay for yeast nonsense suppressors, J. Biot. Chem. 256: 7298–7304.

    CAS  Google Scholar 

  • Tuite, M. F.. Cox, B. S., and McLaughlin, C. S. 1983. In vitro nonsense suppression in [psi+] and [psi−] cell-free lysates of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80: 2824–2828.

    Google Scholar 

  • Udem, S. A., and Warner, J. R. 1972. Ribosomal RNA synthesis in Saccharomyces cerevisiae, J. Mol. Biol. 65: 227–242.

    PubMed  CAS  Google Scholar 

  • Van den Bos, R. C., and Planta, R. J. 1971. Studies on the role of rapidly labelled 20S RNA in the biosynthesis of ribosomal RNA in yeast, Biochim. Biophys. Acta 247: 175–180.

    PubMed  Google Scholar 

  • Vazquez, D., and Jimenez, A. 1980. Antibiotic inhibitors of translation in eukaryotes, In: G. Chambliss, G. R. Graven, J. E. Davis, K. Davis, L. Kahan, and M. Nomura, eds., Ribosomes: Structure, Function and Genetics. University Park Press, Baltimore, pp. 847–869.

    Google Scholar 

  • Villanueva, J. R., Gacto, M., and Sierva, S. M. 1973. Enzymatic composition of a lytic system from Micromonospora chalcea, In: U. R. Villanueva, I. Garcia-Aeha, S. Gascon, and F. Urburu, eds., Yeast, Mold and Plant Protoplasts. Acaemic Press, New York, pp. 3–24.

    Google Scholar 

  • Vollrath, D., and Davis, R. W. 1987. Resolution of DNA molecules greater than 5 mega-bases by contour-clamped homogeneous electric fields, Nucleic Acids Res. 15: 7865–7876.

    PubMed  CAS  Google Scholar 

  • Von der Haar, F. 1979. Purification of aminoacyl-tRNA synthetases, Methods Enzymol. 59: 257–267.

    PubMed  Google Scholar 

  • Waters, M. G., and Blobel, G. 1986. Secretory protein translocation in a yeast cell-free system can occur posttranslationally and require ATP hydrolysis, J. Cell Biol. 102: 1543–1550.

    PubMed  CAS  Google Scholar 

  • Weeks, D. P., Beerman, N., and Griffith, O. M. 1986. A small-scale five hour procedure for isolating multiple samples of CsC1-purified DNA: Application to isolations from mammalian, insect, higher plant, algal, yeast and bacterial sources, Anal. Biochem. 152: 376–385.

    PubMed  CAS  Google Scholar 

  • Wickner, R. B. 1975. Mutants of Saccharomyces cerevisiae that incorporate deoxythymidine 5’-monophosphate into DNA in vivo, Methods Cell Biol. 11: 295–302.

    PubMed  CAS  Google Scholar 

  • Wickner, R. B., and Leibowitz, M. J. 1976. Chromosomal genes essential for replication of a dsRNA plasmid of Saccharomyces cerevisiae: The killer character of yeast, J Mol. Biol. 105: 427–434.

    PubMed  CAS  Google Scholar 

  • Williamson, D. H., and Fennell, D. J. 1975. The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA, Methods Cell Biol. 11: 335–351.

    Google Scholar 

  • Winston, F., Chumley, F., and Fink, G. R. 1983. Eviction and transplacement of mutant genes in yeast, Methods Enzymol. 101: 211–227.

    PubMed  CAS  Google Scholar 

  • Yang, W. K., and Novelli, G. D. 1971. Analysis of isoaccepting tRNAs in mammalian tissues and cells, Methods Enzymol. 20: 44–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuite, M.F., Oliver, S.G. (1991). Biochemical Techniques. In: Tuite, M.F., Oliver, S.G. (eds) Saccharomyces. Biotechnology Handbooks, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2641-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2641-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2643-2

  • Online ISBN: 978-1-4899-2641-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics