Skip to main content

Hormonal Influences on Fetal and Perinatal Water Metabolism

  • Chapter
Endocrinology and Physiology of Reproduction

Abstract

Interest in the fluids and membranes which surround the fetus has persisted for many centuries. Hippocrates was probably the first to recognize that amniotic fluid was mainly fetal urine (Reynolds, 1972). However, Aristotle believed that the outer chorion contained residual seminal fluid (Harvey, 1651). By the time of Fabricius, opinions had changed, and to quote Harvey: “-the fluid within the amnion, wherein the foetus swims, consists of sweat; and that within the chorion of urine.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acher, R., and Fromageot, C., 1957, Relationship of oxytocin and vasopressin to active proteins of posterior pituitary origin, in: “The Neurohypophysis,” H. Heller, ed., pp. 11-16, Butterworths, London.

    Google Scholar 

  • Adolph, E. F., 1967, Ontogeny of volume regulations in embryonic extracellular fluids, Quart. Rev. Biol., 42:1.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, D. P., Britton, H. G., Forsling, M. L., Nixon, D. A., and Ratcliffe, J. G., 1973, Adrenocorticotrophin and vasopressin in foetal sheep and the response to stress, in: “The Endocrinology of Pregnancy and Parturition,” G. Pierrepoint, ed., pp. 112-125, Tenovus Library Series, Alpha Omega Alpha, Cardiff.

    Google Scholar 

  • Alexander, D. P., and Nixon, D. A., 1961, The foetal kidney, Brit. Med. Bull., 17:112.

    PubMed  CAS  Google Scholar 

  • Ames, R. G., 1953, Urinary water excretion and neurohypophysial function in full term and premature infants shortly after birth, Pediatr., 12:272.

    CAS  Google Scholar 

  • Arthur, G. H., 1969, The fetal fluids of domestic animals, J. Reprod. Fertil. Suppl. 9, 45.

    Google Scholar 

  • Artman, H. G., Leake, R. D., Weitzman, R. E., Sawyer, W. H., and Fisher, D. A., 1984, Radioimmunoassay of vasotocin, vasopressin and oxytocin in human neonatal cerebrospinal and amniotic fluid, Dev. Pharmacol. Ther., 7:39.

    PubMed  CAS  Google Scholar 

  • Bain, A. D., and Scott, J. S., 1960, Renal agenesis and severe urinary tract dysplasia. A review of 50 cases with particular reference to the associated anomalies, Brit. Med. J., 1:841.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, R. J., 1976, Water and mineral exchange between maternal and fetal fluids, in: “Fetal Physiology and Medicine,” R. W. Bear and P. W. Nathanielsz, eds., pp. 194-215, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Barnes, A. C., and Seeds, A. E., 1972, The water metabolism of the fetus, pp. 32-47, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Benirschke, K., and McKay, D. G., 1985, The antidiuretic hormone in fetus and infant, Obstet. Gynecol., 1:638.

    Google Scholar 

  • Bourne, G., 1962, The Human Amnion and Chorion, pp. 276, Year Book Medical Publishers, Inc., Chicago.

    Google Scholar 

  • Bradley, R. M., and Mistretta, C. M., 1973, The sense of taste and swallowing activity in foetal sheep, in: “Foetal and Neonatal Physiology,” R. S. Comline, K. W. Cross, G. S. Dawes, and P. W. Nathanielsz, eds., pp. 77, Cambridge University, Cambridge.

    Google Scholar 

  • Brown, D., Grosso, K. A., and DeSousa, R. K., 1983, Correlation between water flow and intramembrane particle aggregation in toad epidermis, Am. J. Physiol., 245:C334.

    PubMed  CAS  Google Scholar 

  • Brown, M. J., Olver, R. E., Ramsden, C. A., Strang, L. B., and Walters, D. V., 1983, Effects of adrenalin and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb, J. Physiol. (Lond.), 344:137.

    CAS  Google Scholar 

  • Brown, P. C., and Brown, S. C., 1982, Effects of hypophysectomy and prolactin on the water-balance response of the newt, Taricha torsa, Gen. Comp. Endocrinol. 46:7.

    Article  PubMed  CAS  Google Scholar 

  • Brunn, F., 1921, Beitrag zur Kenntnis der Wirkung von Hypophysenextrakten auf der Wasserhaushalt de Frosches, Z. Ges. Exp. Med., 25:170.

    Article  CAS  Google Scholar 

  • Burton, A. M., and Forsling, M., 1972, Hormone content of the neurohypophysis in foetal, newborn and adult guinea pigs, J. Physiol. (Lond.), 221:6P.

    CAS  Google Scholar 

  • Capek, K., Dlouha, H., Fernandez, J., and Popp, M., 1968, Regulation of proximal tubular reabsorption in early postnatal period of infant rats: micropuncture study, Proc. Int. Union Physiol. Sci., 7:72.

    Google Scholar 

  • Cassin, S., Dyer, R., Gause, G., and Perks, A. M., 1986, The effects of loop diuretics and ouabain on lung liquid secretion in fetal sheep and guinea pig, J. Physiol. (Lond.), 371; 240P.

    Google Scholar 

  • Cassin, S., and Perks, A. M., 1982, Studies of factors which stimulate lung fluid secretion in fetal goats, J. Devel. Physiol., 4:311.

    CAS  Google Scholar 

  • Challis, J. R. G., Robinson, J. S., Rurak, D. W., and Thorburn, G. D., 1976, The development of endocrine function in the human fetus, in: “The Biology of Human Fetal Growth,” D. F. Roberts and A. M. Thompson, eds., pp. 149-194, Taylor and Francis, London.

    Google Scholar 

  • Chard, T., Hudson, C. N., Edwards, C. R. W., and Boyd, N. R. H., 1971, Release of oxytocin and vasopressin by the human foetus during labour, Nature (Lond.), 234:352.

    Article  CAS  Google Scholar 

  • Danforth, D. N., and Hull, R. W., 1958, The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion, Am. J. Obstet. Gynecol., 75:536.

    PubMed  CAS  Google Scholar 

  • Davis, W. L., Jones, R. G., Hagler, H. K., Goodman, D. B. P., and Knight, J. P., 1981, Intracellular water transport in the actions of ADH, in: “Hormonal Regulation of Epithelial Transport of Ions and Water,” W. N. Scott and D. B. P. Goodman, eds., Vol. 372, pp. 118-130, Annals of the New York Academy of Sciences.

    Google Scholar 

  • Diamond, J. M., 1971, Standing-gradient model of fluid transport in epithelia, Fed. Proc., 30:6.

    PubMed  CAS  Google Scholar 

  • Dicker, S. E., and Tyler, C., 1953a, Vasopressor and oxytocic activities of the pituitary glands of rats, guinea-pigs and cats and of human foetuses, J. Physiol. (Lond.), 121:206.

    CAS  Google Scholar 

  • Dicker, S. E., and Tyler, C., 1953b, Estimation of the antidiuretic, vasopressor and oxytocic hormones in the pituitary glands of dogs and puppies, J. Physiol. (Lond.), 120:141.

    CAS  Google Scholar 

  • Dogterom, J., Snidjewint, F. G. M., Pevet, P., and Swaab, D. F., 1980, Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and foetal pituitary gland: failure to demonstrate vasotocin in mammals, J. Endocrinol., 84:115.

    Article  PubMed  CAS  Google Scholar 

  • Elliot, P. M., and Inman, W. H. W., 1961, Volume of liquor amnii in normal and abnormal pregnancy, Lancet, 2:835.

    Article  Google Scholar 

  • Ervin, M. G., Ross, M. G., Leake, R. D., and Fisher, D. A., 1986, Fetal recirculation of amniotic fluid arginine vasopressin, Am. J. Physiol., 250:E253.

    PubMed  CAS  Google Scholar 

  • Fawcett, D. W., 1965, Surface specializations of absorbing cells, J. Histochem. Cytochem., 13:75.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett, D. W., 1981, The Cell, 2nd edition, W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Flexner, L. B., and Gellhorn, A., 1942, The transfer of water and sodium to the amniotic fluid of the guinea pig, Am. J. Physiol., 136:757.

    CAS  Google Scholar 

  • France, V., 1976, Active sodium uptake by the skin of fetal sheep and pigs, J. Physiol. (Lond.), 258:377.

    CAS  Google Scholar 

  • France, V. M., Stanier, M. W., and Wooding, F. B. P., 1976, The effect of hormones and of an osmotic gradient on the structure and properties of mammalian foetal urinary bladder in vitro, J. Physiol. (Lond.), 258:393.

    CAS  Google Scholar 

  • Friesen, H., Hwang, P., Guyda, H., Tolis, G., Tyson, J., and Myers, R., 1972, A radioimmunoassay for human prolactin, in: “Prolactin and Carcinogenesis,” A. R. Boyne and E. Griffiths, eds., pp. 64-80, Alpha Omega Alpha, Cardiff.

    Google Scholar 

  • Haeckel, E, 1866, Generelle Morphologie der Organismen, Berlin.

    Google Scholar 

  • Harvey, W., 1651, De uteri membranis et humoribus, in: “De Generatione Animalium,” pp. 527-568, Ludovicum Elzevirium, Amsterdam. Translation quoted: Robert Willis, “The Works of William Harvey, M. D.,” 1965, The Sources of Science, 13:551, Johnson Reprint Corp., New York.

    Google Scholar 

  • Heller, H., 1961, Occurrence, storage and metabolism of oxytocin, in: “Oxytocin,” R. Caldeyro-Barcia and H. Heller, eds., pp. 3-23, Pergamon, New York.

    Google Scholar 

  • Heller, H., 1966, Hormone content of the hypothalamo-neurohypophysial system, Brit. Med. Bull., 22:227.

    PubMed  CAS  Google Scholar 

  • Heller, H., and Lederis, K., 1959, Maturation of the hypothalamo-neurohypophysial system, J. Physiol. (Lond.), 147:299.

    CAS  Google Scholar 

  • Hirano, T., 1977, Prolactin and osmoregulation. Prolactin and hydromineral metabolism in the vertebrates, Gunma Symp. Endocrinol., 14:45.

    CAS  Google Scholar 

  • Holt, W. F., and Perks, A. M., 1975, The effect of prolactin on water movement through the isolated amniotic membrane of the guinea pig, Gen. Comp. Endocrinol., 26:153.

    Article  PubMed  CAS  Google Scholar 

  • Holt, W. F., and Perks, A. M., 1977a, The influence of vasopressin on the passage of tritiated water through the isolated amniotic membrane and other tissues from the fetal guinea pig, Can. J. Zool., 55:1393.

    Article  PubMed  CAS  Google Scholar 

  • Holt, W. F., and Perks, A. M., 1977b, The effect of prolactin on sodium flux through the isolated amniotic membrane of the guinea pig, Can. J. Zool., 55:1468.

    Article  PubMed  CAS  Google Scholar 

  • Holton, P., 1948, A modification of the method of Dale and Laidlaw for standardization of posterior pituitary extract, Brit. J. Pharmacol., 3:328.

    PubMed  CAS  Google Scholar 

  • Hoyes, A. D., 1975, Structure and function of amnion, Obstet. Gynec. Annual, 4:1.

    CAS  Google Scholar 

  • Hutchinson, D. L., Gray, M. J., Plentl, A. A., Alvarez, H., Caldeyro-Barcia, R., Kaplan, B., and Lind, J., 1959, The role of the fetus in the water exchange of the amniotic fluid of normal and hydramniotic patients, J. Clin. Invest., 38:971.

    Article  PubMed  CAS  Google Scholar 

  • Imai, M., 1977, Effect of bumetanide and furosemide on the thick ascending limb of Henle’s loop of rabbits and rats perfused in vitro, Eur. J. Pharmacol., 41:409.

    Article  PubMed  CAS  Google Scholar 

  • Jeffcoate, T. N. A., and Scott, J. S., 1959, Polyhydramnios and oligohydramnios, Can. Med. Assn. J., 80:77.

    CAS  Google Scholar 

  • Johnson, D. W., Hirano, T., Sage, M., Foster, R. C., and Bern, H. A., 1974, Time course of response of starry flounder (Platichthys stellatus) urinary bladder to prolactin and salinity transfer, Gen. Comp. Endocrinol., 24:373.

    Article  PubMed  CAS  Google Scholar 

  • Josimovich, J. B., Weiss, G., and Hutchinson, D., 1974, Sources and disposition of pituitary prolactin in maternal circulation, amniotic fluid, fetus and placenta in the pregnant rhesus monkey, Endocrinology, 94:1364.

    Article  PubMed  CAS  Google Scholar 

  • Jost, A., and Policard, A., 1948, Contribution experimentale a l’étude du developpement prenatal du poumon chez le lapin, Arch. Anat. Microscop. Morphol. Exp., 37:323.

    Google Scholar 

  • Kerpel-Fronius, E., 1970, Electrolyte and water metabolism, in: “Physiology of the Perinatal Period,” U. Stave, ed., pp. 643-678, Appleton-Century-Crofts, New York.

    Google Scholar 

  • King, B. F., 1978, A cytological study of plasma membrane modifications, intercellular junctions and endocytotic activity of amniotic epithelium, Anat. Rec., 190:113.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, L. I., 1975, Fetal renal function and water and electrolyte balance, in: “The Mammalian Fetus,” E. Hafez, ed., pp. 120-153, Charles C. Thomas, Illinois.

    Google Scholar 

  • Kokko, J. P., 1984, Site and mechanism of action of diuretics, Am. J. Med., 77:11.

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz, H., and Slotkin, T. A., 1986, The “stress” of being born, Sci. Amer., 254:100.

    Article  PubMed  CAS  Google Scholar 

  • Leake, R. D., Ervin, M. G., Ross, M. G., Polk, D. H., Lam, R., and Fisher, D. A., 1985, Ovine fetal-maternal water transfer is independent of fetal prolactin levels, Pediat. Res., 19:986.

    Article  PubMed  CAS  Google Scholar 

  • Leake, R. D., Palmer, S., Oakes, G. K., Artman, H., Morris, A. M., and Fisher, D. A., 1981, Arginine vasotocin inhibits ovine fetal/maternal water transfer, Pediat. Res., 15:483.

    Article  Google Scholar 

  • Leake, R. D., Stegner, H., Palmer, S. M., Oakes, G. K., and Fisher, D. A., 1983, Arginine vasopressin and arginine vasotocin inhibit ovine fetal/ maternal water transfer, Pediat. Res., 17:583.

    Article  PubMed  CAS  Google Scholar 

  • Lederis, K., Fisher, A. W., Geonzon, R. M., Gill, V., Ko, D., and Raghavan, S., 1980, Arginine vasotocin in fetal, newborn and adult mammals, in: “Hormones, Adaptation and Evolution,” S. Ishii et al., eds., pp. 71-77, Japanese Scientific Scoeity Press, Tokyo/Springer Verlag, Berlin.

    Google Scholar 

  • Leffler, C. W., Crofton, J., Brooks, D. P., Share, L., Hessler, J. R., and Green, R. S., 1985, Changes in plasma arginine vasopressin during transition from fetus to newborn following minimal trauma delivery of lambs and goats, Biol. Neonate, 48:43.

    Article  PubMed  CAS  Google Scholar 

  • Leontic, E. A., Schruefer, J. J., Andreassen, B., Pinto, H., and Tyson, J. E., 1979, Further evidence for the role of prolactin on human fetoplacental osmoregulation, Am. J. Obstet. Gynecol., 133:435.

    PubMed  CAS  Google Scholar 

  • Leontic, E. A., and Tyson, J. E., 1977, Prolactin and fetal osmoregulation: water transport across isolated human amnion, Am. J. Physiol., 232:R124.

    PubMed  CAS  Google Scholar 

  • Levina, S. E., 1968, Endocrine features in development of human hypothalamus, hypophysis, and placenta, Gen. Comp. Endocrinol., 11:151.

    Article  PubMed  CAS  Google Scholar 

  • Lind, T., 1969, Biochemical changes in human liquor amnii during gestation, J. Reprod. Fertil. Suppl., 9:53.

    PubMed  Google Scholar 

  • Lind, T., and Hytten, F. E., 1972, Fetal control of fetal fluids, in: “Physiological Biochemistry of the Fetus,” A. A. Hodari and F. G. Mariona, eds., pp. 54-65, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Maetz, J., 1968, Salt and water metabolism, in: “Perspectives in Endocrinology; Hormones in the Lives of Lower Vertebrates,” E. J. W. Barrington and G. B. Jørgensen, eds., pp. 47–162, Academic Press, New York.

    Google Scholar 

  • Mainoya, J. R., 1975a, Further studies on the action of prolactin on fluid and ion absorption by the rat jejunum, Endocrinology, 96:1158.

    Article  PubMed  CAS  Google Scholar 

  • Mainoya, J. R., 1975b, Analysis of the role of endogenous prolactin on fluid and sodium chloride absorption by the rat jejunum, J. Endocrinol., 67:343.

    Article  PubMed  CAS  Google Scholar 

  • Mainoya, J. R., Bern, H. A., and Regan, J. W., 1974, Influence of ovine prolactin on transport of fluid and sodium chloride by the mammalian intestine and gallbladder, J. Endocrinol., 63:311.

    Article  PubMed  CAS  Google Scholar 

  • Manku, M. S., Mtabaji, J. P., and Horrobin, D. F., 1975, Effect of cortisol, prolactin and ADH on the amniotic membrane, Nature (Lond.), 258:78.

    Article  CAS  Google Scholar 

  • Mellor, D. J., and Slater, J. S., 1971, Daily changes in amniotic and allantoic fluid during the last three months of pregnancy in conscious, unstressed ewes, with catheters in their foetal fluid sacs, J. Physiol. (Lond.), 217:573.

    CAS  Google Scholar 

  • Montagna, W., and Parakkal, P. F., 1974, The Structure and Function of Skin, 3rd Edition, Academic Press, New York.

    Google Scholar 

  • Munsick, R. A., 1960, Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues, Endocrinology, 66:451.

    Article  CAS  Google Scholar 

  • Neacsu, C., 1972, The mechanism of antigonadotrophic action of a polypeptide extracted from a bovine pineal gland, Rev. Roum. Physiol., 9:161.

    PubMed  CAS  Google Scholar 

  • North, P. M., and Segal, M. B., 1976, A study of the permeability properties of the guinea pig amniotic membrane, J. Physiol. (Lond.), 256:245.

    CAS  Google Scholar 

  • Olver, R. E., 1977, Fetal lung liquids, Fed. Proc., 36:2669.

    PubMed  CAS  Google Scholar 

  • Olver, R. E., 1983, Fluid balance across the fetal alveolar epithelium, Amer. Rev. Resp. Dis., 127:S33.

    PubMed  CAS  Google Scholar 

  • Olver, R. E., Ramsden, C. A., and Strang, L. B., 1981, Adrenaline-induced changes in net lung liquid volume flow across the pulmonary epithelium of the fetal lamb: evidence for active sodium transport, J. Physiol. (Lond.), 319:38.

    Google Scholar 

  • Olver, R. E., and Strang, L. B., 1974, Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb, J Physiol. (Lond.), 241:327.

    CAS  Google Scholar 

  • Parakkal, P. F., and Alexander, N. J., 1972, Keratinization: A Survey of Vertebrate Epithelia, Academic Press, New York.

    Google Scholar 

  • Parke, L., 1973, Detection of prolactin activity by bioassay in human amniotic fluid, J. Endocrinol., 58:137.

    Article  PubMed  CAS  Google Scholar 

  • Parker, R. E., 1973, Introductory Statistics for Biology, pp. 19-20, Edward Arnold, London.

    Google Scholar 

  • Pavel, S., 1975, Vasotocin biosynthesis by neurohypophysial cells from human fetuses. Evidence of its ependymal origin, Neuroendocrinology, 19:150.

    Article  PubMed  CAS  Google Scholar 

  • Perks, A. M., 1977, Developmental and evolutionary aspects of the neurohypophysis, Amer. Zool., 17:833.

    CAS  Google Scholar 

  • Perks, A. M., and Cassin, S., 1982, The effects of arginine vasopressin and other factors on the production of lung fluid in fetal goats, Chest, 81S:63S.

    Article  Google Scholar 

  • Perks, A. M., and Cassin, S., 1985a, The effects of arginine vasopressin on lung liquid secretion in chronic fetal sheep, in: “The Physiological Development of the Fetus and Newborn,” C. T. Jones and P. W. Nathanielsz, eds., pp. 253–257, Academic Press, London.

    Google Scholar 

  • Perks, A. M., and Cassin, S., 1985b, The rate of production of lung liquid in fetal goats, and the effect of expansion of the lungs, J. Develop. Physiol., 7:149.

    CAS  Google Scholar 

  • Perks, A. M., and Vizsolyi, E., 1973, Studies of the neurohypophysis in foetal mammals, in: “Foetal and Neonatal Physiology,” R. S. Comline, K. W. Cross, G. S. Dawes and P. W. Nathanielsz, eds., pp. 430–438, Cambridge University Press, Cambridge.

    Google Scholar 

  • Perks, A. M., Vizsolyi, E., Holt, W. F., and Cassin, S., 1978, Hormonal influences on the movement and composition of amniotic fluid, in: “Comparative Endocrinology,” P. J. Gaillard and H. H. Boer, eds., pp. 231–234, Elsevier/North Holland Biomedical Press, New York.

    Google Scholar 

  • Pohjavuori, M., and Fyhrquist, F., 1980, Hemodynamic significance of vasopressin in the newborn infant, J. Pediat., 97:462.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, W. A., 1972, Fetal sources of amniotic fluid: an enigma, in: “Physiological Biochemistry of the Fetus,” A. A. Hodari and F. Mariona, eds., pp. 3-31, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Riddle, C. V., 1985, Intramembranous response to cAMP in fetal epidermis, Cell Tissue Res., 241:687.

    Article  PubMed  CAS  Google Scholar 

  • Robillard, J. E., Matson, J. R., Sessions, C., and Smith, F. G., 1979, Developmental aspects of renal tubular reabsorption of water in the lamb fetus, Pediat. Res., 13:1172.

    Article  PubMed  CAS  Google Scholar 

  • Robillard, J. E., and Weitzman, R. E., 1980, Developmental aspects of the fetal renal response to exogenous arginine vasopressin, Am. J. Physiol., 238:F407.

    PubMed  CAS  Google Scholar 

  • Ross, M. G., Ervin, G., Leake, R. D., Fu, P., and Fisher, D. A., 1984, Fetal lung liquid regulation by neuropeptides, Am. J. Obstet. Gynecol., 150:421.

    PubMed  CAS  Google Scholar 

  • Ross, M. G., Ervin, M. G., Leake, R. D., Oakes, G., Hobel, C., and Fisher, D. A., 1983, Bulk flow of amniotic fluid water in response to maternal osmotic challenge, Am. J. Obstet. Gynecol., 147:697.

    PubMed  CAS  Google Scholar 

  • Roy, C., and Ausiello, D. A., 1981, Regulation of vasopressin binding to intact cells, in: “Hormonal Regulation of Epithelial Transport of Ions and Water,” W. N. Scott and D. B. P. Goodman, eds., Vol. 372, pp. 92-105, Annals of the New York Academy of Sciences.

    Google Scholar 

  • Rurak, D. W., and Gruber, N. C., 1984, The effect of vasopressin on fetal oxygenation in sheep, Can. J. Physiol. Pharmacol., 62:27.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, W. H., 1960, Increased water permeability of the bullfrog (Rana catesbiana) bladder in vitro in response to synthetic oxytocin and arginine vasotocin and to neurohypophysial extracts from non-mammalian vertebrates, Endocrinology, 66:112.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, W. H., 1961, Biologic assays for oxytocin and vasopressin, Methods Med. Res., 9:210.

    PubMed  CAS  Google Scholar 

  • Seeds, A. E., 1965, Water metabolism of the fetus, Am. J. Obstet. Gynecol., 92:727.

    PubMed  Google Scholar 

  • Seeds, A. E., 1967, Water transfer across the human amnion in response to osmotic gradients, Am. J. Obstet. Gynecol., 98:568.

    PubMed  CAS  Google Scholar 

  • Seeds, A. E., 1972, Amniotic fluid, in: “The Water Metabolism of the Fetus,” A. C. Barnes and A. E. Seeds, eds., pp. 48-73, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Skowsky, W. R., Bashore, R. A., Smith, F. G., and Fisher, D. A., 1973, Vasopressin metabolism in the foetus and newborn, in: “Foetal and Neonatal Physiology,” R. S. Comline, K. W. Cross, G. S. Dawes and P. W. Nathanielsz, eds. pp. 439–447, Cambridge University Press, Cambridge.

    Google Scholar 

  • Skowsky, W. R., and Fisher, D. A., 1977, Fetal neurohypophysial arginine vasopressin and arginine vasotocin in man and sheep, Pediat. Res., 11:627.

    Article  PubMed  CAS  Google Scholar 

  • Spring, K. R., and Hope, A., 1978, Size and shape of the lateral intercellular spaces in a living epithelium, Science, 200:54.

    Article  PubMed  CAS  Google Scholar 

  • Spring, K. R., and Hope, A., 1979, Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder, J. Gen. Physiol., 73:287.

    Article  PubMed  CAS  Google Scholar 

  • Stark, R., Hussain, K., Daniel, S., Milliez, J., Morishima, L., and James, L. S., 1977, Characteristics of vasopressin (AVP) release during adrenocorticotrophin (ACTH) induced parturition in the lamb, Pediat. Res., 11:412.

    Article  Google Scholar 

  • Stark, R. I., Daniel, S. S., Hussain, K. M., James, L. S., and Vande Wiele, R. L., 1979, Arginine vasopressin during gestation and parturition in sheep fetus, Biol. Neonate, 35:235.

    Article  PubMed  CAS  Google Scholar 

  • Strang, L. B., 1977, Neonatal Respiration; Physiological and Clinical Studies, p. 316, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Thornburg, K. L., Binder, N. D., and Faber, J., 1979, Diffusion permeability and ultrafiltration-reflection-coefficients of Na+ and Cl~ in the nearterm placenta of the sheep, J. Develop. Physiol., 1:47.

    CAS  Google Scholar 

  • Tiedman, K., 1979, The amniotic, allantoic and yolk-sac epithelia of the cat: SEM and TEM studies, Anat. Embryol., 158:75.

    Article  Google Scholar 

  • Tormey, J., and Diamond, J. M., 1967, The ultrastructural route of fluid transport in rabbit gallbladder, J. Gen. Physiol., 50:2031.

    Article  PubMed  CAS  Google Scholar 

  • Vizsolyi, E., and Perks, A. M., 1969, New neurohypophysial principle in foetal mammals, Nature (Lond.), 223:1169.

    Article  CAS  Google Scholar 

  • Vizsolyi, E., and Perks, A. M., 1974, The effect of arginine vasotocin on the isolated amniotic membrane of the guinea pig, Gen. Comp. Endocrinol., 52:371.

    CAS  Google Scholar 

  • Vizsolyi, E., and Perks, A. M., 1976a, Neurohypophysial hormones in fetal life and pregnancy. I. Pharmacological studies in the sheep (Ovis aries), Gen. Comp. Endocrinol., 29:28.

    Article  PubMed  CAS  Google Scholar 

  • Vizsolyi, E., and Perks, A. M., 1976b, Neurohypophysial hormones in fetal life and pregnancy. II. Chromatographic studies in the sheep (Ovis aries), Gen. Comp. Endocrinol., 29:41.

    Article  PubMed  CAS  Google Scholar 

  • Vosburgh, G. J., Flexner, L. B., Cowie, D. B., Hellman, L. M., Procter, N. K., and Wilde, W. S., 1948, The rate of renewal in women of the water and sodium of the amniotic fluid as determined by tracer techniques, Am. J. Obstet. Gynecol., 56:1156.

    PubMed  CAS  Google Scholar 

  • Wagner, G., and Tygstrup, I., 1963, Oligohydramnios and urinary malformations in early human pregnancy, Acta Path. Micro. Scand., 59:273.

    Article  CAS  Google Scholar 

  • Walters, D. V., and Olver, R. E., 1978, The role of catecholamines in lung liquid absorption at birth, Pediat. Res., 12:239.

    Article  PubMed  CAS  Google Scholar 

  • Watson, B. P., 1906, Withdrawal of the liquor amnii, J. Obstet. Gynecol. Brit. Emp., 9:15.

    Google Scholar 

  • Yakovleva, I. V., 1965, Neirosekretornaga gipotalmo-gipofizarnaya sistema v rannem ontogeneze pozvonochnukha zhivotnykh i cheloveka, Arkhiv. Anat. Gist. i Embryol., 48:79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perks, A.M., Cassin, S. (1987). Hormonal Influences on Fetal and Perinatal Water Metabolism. In: Leung, P.C.K., Armstrong, D.T., Ruf, K.B., Moger, W.H., Friesen, H.G. (eds) Endocrinology and Physiology of Reproduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1971-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1971-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1973-1

  • Online ISBN: 978-1-4899-1971-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics