Skip to main content

Trace Element Binding Ligands in Human Milk: Function in Trace Element Utilization

  • Chapter
Human Lactation 3
  • 177 Accesses

Abstract

Several essential trace elements are present in human milk in much lower concentrations than in milk from other species or in other infant diets.1 However, recent research has shown that the bioavailability of these trace elements (iron, zinc, copper and manganese) is very high from. human milk.2 As a consequence, trace element deficiency in breast-fed infants is rare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Lönnerdal, C.L. Keen, and L.S. Hurley, Iron, copper, zinc and manganese in milk, Ann. Rev. Nutr. 1:149 (1981).

    Article  Google Scholar 

  2. B. Lönnerdal, Dietary factors affecting trace element bioavailability from breast-milk, cow’s milk and infant formula, in: “Progress in Food and Nutrition Science,” Vol. 9, R.K. Chandra, ed., Pergamon Press, Inc., Elmsford, NY, pp. 35-62 (1985).

    Google Scholar 

  3. G.-B. Fransson and B. Lönnerdal, Iron in human milk, J. Pediatr. 96:380 (1980).

    Article  CAS  Google Scholar 

  4. G.-B. Fransson and B. LBnnerdal, Distribution of trace elements and minerals in human and cow’s milk, Pediatr. Res. 17:912 (1983).

    Article  CAS  Google Scholar 

  5. B. Lönnerdal, Iron in breast milk, in: “Iron Nutrition in Infancy and Childhood,” A. Stekel, ed., Nestle, Vevey/Raven Press, New York, pp. 95–118 (1984).

    Google Scholar 

  6. B.G. Johansson, Isolation of an iron-containing red protein from human milk, Acta Chem. Scand. 14:510 (1960).

    Article  Google Scholar 

  7. P.L. Masson, “La lactoferrine,” Editions Arscia SA, Brussels (1970).

    Google Scholar 

  8. M.H. Metz-Boutique, J. Joliés, J. Mazurier, F. Schoentger, D. Legrand, G. Spik, J. Montreuil, and P. Joliés, Human Lactoferrin: amino acid sequence and structural comparisons with other transferrins, Eur. J. Biochem. 145:659 (1984).

    Article  Google Scholar 

  9. G.-B. Fransson and B. Lönnerdal, Iron, copper, zinc, calcium and magnesium in human milk fat, Am. j. Clin. Nutr. 39:185 (1984).

    CAS  Google Scholar 

  10. J.H. Brock, F. Arzabe, F. Lampreave, and A. Pineiro, The effect of trypsin on bovine transferrin and lactoferrin, Biochim. Biophys. Acta 446:214 (1976).

    Article  CAS  Google Scholar 

  11. G. Spik, B. Brunet, C. Mazurier-Dehaine, G. Fontaine, and J. Montreuil, Characterization and properties of the human and bovine lactoferrins extracted from the feces of newborn infants, Acta Paediatr. Scand. 71:974 (1982).

    Article  Google Scholar 

  12. L.A. Davidson and B. LBnnerdal, Lactoferrin and secretory IgA in feces of exclusively breast-fed infants, Am. J. Clin. Nutr. 41:852 (1985).

    Google Scholar 

  13. S.M. Donovan, S.A. Atkinson, and B. LBnnerdal, Whey proteins in feces of preterm infants receiving preterm milk and infant formula, in this volume.

    Google Scholar 

  14. R.J. Schanler, R.M. Goldblum, C. Garza, and A.S. Goldman, Enhanced fecal excretion of selected immune factors in very low birth weight infants fed fortified human milk, Pediatr. Res. 20:711 (1986).

    Article  CAS  Google Scholar 

  15. U.M. Saarinen, M.A. Siimes, and P.R. Dallman, Iron absorption in infants: high bioavailability of breast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin, J. Pediatr. 91:36 (1977).

    Article  CAS  Google Scholar 

  16. J.A. McMillan, S.A. Landaw, and F.A. Oski, Iron sufficiency in breast-fed infants and the availability of iron from human milk, Pediatrics 58:686 (1976).

    CAS  Google Scholar 

  17. J.A. McMillan, F.A. Oski, G. Lourie, R.M. Tomarelli, and S.A. Landaw, Iron absorption from human milk, simulated human milk, and proprietary formulas, Pediatrics 55:686 (1975).

    Google Scholar 

  18. T.M. Cox, J. Mazurier, G. Spik, J. Montreuil, and T.J. Peters, Iron binding proteins and influx of iron across the duodenal brush border. Evidence for specific lactotransferrin receptors in the human intestine, Biochim. Biophys. Acta 588:120 (1979).

    Article  CAS  Google Scholar 

  19. L.A. Davidson and B. LBnnerdal, Isolation and characterization of Rhesus monkey milk lactoferrin, Pediatr. Res. 20:197 (1986).

    Article  CAS  Google Scholar 

  20. B. LBnnerdal, L. Davidson, and C.L. Keen, Development of a Rhesus monkey model for the study of iron and manganese from infant diets, Fed. Proc. 44:1850 (1985).

    Google Scholar 

  21. L.A. Davidson and B. LBnnerdal, Specific binding of monkey milk lactoferrin to its brush border receptor. Fed. Proc. 44:1673 (1985).

    Google Scholar 

  22. L.A. Davidson and B. LBnnerdal, The intestinal lactoferrin receptor: presence and specificity during development, Fed. Proc. 45:588 (1986).

    Google Scholar 

  23. J. Mazurier, J. Montreuil, and G. Spik, Visualization of lactotransferrin brush-border receptors by ligand-blotting, Biochim. Biophys. Acta 821:435 (1985).

    Google Scholar 

  24. B. LBnnerdal, A.G. Stanislowski, and L.S. Hurley, Isolation of a low molecular weight zinc binding ligand from human milk, J. Inorg. Biochem. 12:71 (1980).

    Article  Google Scholar 

  25. B. LBnnerdal, B. Hoffman, and L.S. Hurley, Zinc and copper binding proteins in human milk, Am. J. Clin. Nutr. 36:1170 (1982).

    Google Scholar 

  26. M.T. Martin, K.F. Licklider, J.G. Brushmiller, and F.A. Jacobs, Detection of low molecular weight copper (II) and zinc (II) binding ligands in ultrafiltered milks — the citrate connection, J. Inorg. Biochem. 15:55 (1981).

    Article  CAS  Google Scholar 

  27. B. LBnnerdal, C.L. Keen, B. Hoffman, and L.S. Hurley, Copper ligands in human milk: a vehicle for copper supplementation in the treatment of Menkes’ disease?, Am. J. Dis. Child. 134:802 (1980).

    Google Scholar 

  28. G.W. Evans and P.E. Johnson, Characterization and quantitation of a zinc-binding ligand in human milk, Pediatr. Res. 14:876 (1980).

    Article  CAS  Google Scholar 

  29. L.S. Hurley and B. LBnnerdal, Zinc binding in human milk: citrate versus picolinate, Nutr. Rev. 40:65 (1982).

    Article  CAS  Google Scholar 

  30. E.W. Ainscough, A.M. Brodie, and J.E. Plowman, Zinc transport by lactoferrin in human milk, Am. J. Clin. Nutr. 33:1314 (1980).

    CAS  Google Scholar 

  31. P. Blakeborough, D.N. Salter, and M.I. Gurr, Zinc binding in cow’s milk and human milk, Biochem. J. 209:505 (1983).

    CAS  Google Scholar 

  32. E.W. Ainscough, A.M. Brodie, and J.E. Plowman, The chromium, manganese, cobalt and copper complexes of human lactoferrin, Inorg. Chim. Acta 33:149 (1979).

    Article  CAS  Google Scholar 

  33. B. LBnnerdal, C.L. Keen, and L.S. Hurley, Manganese binding proteins in human and cow’s milk, Am. J. Clin. Nutr. 41:550 (1985).

    Google Scholar 

  34. C.D. Eckhert, Isolation of a protein from human milk that enhances zinc absorption in humans, Biochem. Biophys. Res. Comm. 130:264 (1985).

    Article  CAS  Google Scholar 

  35. B. Arvidsson, Å. Cederblad, E. Björn-Rasmussen, and B. Sandström, A radionuclide technique for studies of zinc absorption in man, Int. J. Nucl. Med. Biol. 5:104 (1979).

    Article  Google Scholar 

  36. K.M. Hambidge, P.A. Walravens, C.E. Casey, R.M. Brown, and C. Bender, Plasma zinc concentrations of breast-fed infants, J. Pediatr. 94:607 (1979).

    Article  CAS  Google Scholar 

  37. C.E. Casey, P.A. Walravens, and K.M. Hambidge, Availability of zinc: loading tests with human milk, cow’s milk, and infant formulas, Pediatrics 68:394 (1981).

    CAS  Google Scholar 

  38. L.S. Valberg, P.R. Flanagan, J. Brennan, and M.J. Chamberlain, Does the oral zinc tolerance test measure zinc absorption?, Am. J. Clin. Nutr. 41:370(1985).

    Google Scholar 

  39. B. SandstrBm, A. Cederblad, and B. LBnnerdal, Zinc absorption from human, cow’s milk and infant formula, Am. J. Dis. Child. 137:726 (1985).

    Google Scholar 

  40. B. Sandström, C.L. Keen, B. Lönnerdal, An experimental model for studies of zinc bioavailability from milk and infant formulas using extrinsic labelling, Am. J. Clin. Nutr. 38:420 (1983).

    Google Scholar 

  41. B. Lönnerdal, J.G. Bell, A.G. Hendrickx, and C.L. Keen, Improved zinc bioavailability from dephytinized soy formula, Am. J. Clin. Nutr. 43:674 (1986).

    Google Scholar 

  42. B. Lönnerdal, C.L. Keen, J.G. Bell, and L.S. Hurley, Zinc uptake and retention from chelates and milk fractions, in “Trace Elements in Man and Animals (TEMA)-5,” C.F. Mills, I. Bremner, and J.K. Chester, eds., Commonwealth Agricultural Bureaux, Farnham Royal, UK, pp. 427-430 (1985).

    Google Scholar 

  43. B. Lönnerdal, J.G. Bell, and C.L. Keen, Copper absorption from human milk, cow’s milk and infant formulas using a suckling rat model, Am. J. Clin. Nutr. 42:836 (1985).

    Google Scholar 

  44. A. Cordano, Copper deficiency in clinical medicine, in “Zinc and Copper and Clinical Medicine,” K.M. Hambidge and B.L. Nichols, Jr., eds., SP Medical and Scientific Books, New York, pp. 119–126 (1978).

    Google Scholar 

  45. C.L. Keen, J.G. Bell, and B. LBnnerdal, The effect of age on manganese status and retention from milk and infant formulas in rats, J. Nutr. 116:395 (1986).

    CAS  Google Scholar 

  46. J.G. Bell, C.L. Keen, and B. LBnnerdal, Manganese uptake by brush-border membrane vesicles from rat small intestine, Fed. Proc. 45:368 (1986).

    Google Scholar 

  47. S.T. Miller, G.C. Cotzias, and H.A. Evert, Control of tissue manganese: initial absence and sudden emergence of excretion in the neonatal mouse, Am. J. Physiol. 229:1980 (1975).

    Google Scholar 

  48. B. LBnnerdal, C.L. Keen, M. Ohtake, and T. Tamura, Iron, zinc, copper, and manganese in infant formulas, Am. J. Dis. Child. 137:433 (1983).

    Google Scholar 

  49. C.L. Keen, B. LBnnerdal, and L.S. Hurley, Manganese, in “Biochemistry of the Essential Ultratrace Elements,” E. Frieden, ed., Plenum Publ. Co., New York, pp. 89–132 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lönnerdal, B. (1987). Trace Element Binding Ligands in Human Milk: Function in Trace Element Utilization. In: Goldman, A.S., Atkinson, S.A., Hanson, L.Å. (eds) Human Lactation 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0837-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0837-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0839-1

  • Online ISBN: 978-1-4899-0837-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics