Skip to main content

Influence of Water on the Mobility of Small Molecules Dispersed in a Polymeric System

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Summary

The rotational mobility of paramagnetic solutes dispersed in partially hydrated macromolecules (proteins, polysaccharides, synthetic polymers) was measured using Electron Spin Resonance. A critical minimum amount of water was observed to be necessary for these molecules to reach a level of mobility of the same order as in dilute solutions. This amount of water depended on the size of the diffusing solute and on the microporosity of the macromolecule. Above this critical moisture range, a progressive increase of the proportion of mobile solute occurred over a hydration range determined by the size of the diffusing solute. At the same time, the rotational diffusivity of the mobile solute increased linearly with water content. The mobilization pattern of spin-labelled side chains of caseinates was observed to be similar to that of the solute. Results are discussed with reference to free volume theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Levine and L. Slade, A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs), Carbohydr. Polym. 6:213 (1986).

    Article  CAS  Google Scholar 

  2. D. Simatos, M. Le Meste, D. Petroff, and B. Halphen, Use of electron spin resonance for the study of solute mobility in relation to moisture content in model food systems, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  3. M. Le Meste and R.B. Duckworth, The influence of water content on the mobility of solute molecules and of protein side chains in caseinate preparation, Intern. J. Food Sci. Technol. 23:457 (1988).

    Article  Google Scholar 

  4. A.I. Kaïväräinen, “Solvent Dependent Flexibility of Proteins and Principles of their Function,” Reidel, Dordrecht (1985).

    Book  Google Scholar 

  5. R.B. Duckworth and C.E. Kelly, Studies of solution processes in hydrated starch and agar at low moisture levels using wide-line nuclear magnetic resonance, J. Food Technol. 8:105 (1973).

    Article  CAS  Google Scholar 

  6. R.B. Duckworth, Solute mobility in relation to water content and water activity, in: “Water Activity: Influence on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  7. P. Walstra, Nonsolvent water and steric exclusion of solutes. Kolloid Polymer 251:603 (1973).

    Article  CAS  Google Scholar 

  8. A.L. Kovarskii, J. Placek, and F. Szöcs, Study of rotational mobility in stable nitroxide radicals in solid polymers, Polymer 19:1137 (1978).

    Article  CAS  Google Scholar 

  9. P. Tormäla, On the mechanism of motions of nitroxyl radicals in polymers. Polymer 15:124 (1974).

    Article  Google Scholar 

  10. M. Le Meste, L. Viguier, D. Lorient, and D. Simatos, Rotational diffusivity of solutes in concentrated caseinates. Influence of glycosylation, J. Food Sci. 55:724 (1990).

    Article  Google Scholar 

  11. M. Le Meste, B. Colas, G. Blond, and D. Simatos, Influence of glycosylation on the hydration properties of caseinates, J. Dairy Res. 56:479 (1989).

    Article  Google Scholar 

  12. M. Le Meste and A. Voilley, Influence of hydration on rotational diffusivity of solutes in model systems, J. Phys. Chem. 92:1612 (1988).

    Article  Google Scholar 

  13. A.L. Kovarskii, A.M. Wasserman, and A.L. Buchachenko, The study of rotational and translational diffusion constant for stable nitroxide radicals in liquids and polymers, J. Magn. Res. 7:225 (1972).

    CAS  Google Scholar 

  14. B. Kowert and D. Kivelson, ESR linewidths in solution VIII. Two component diamagnetic solvents, J. Chem. Phys. 64:5206 (1976).

    Article  CAS  Google Scholar 

  15. J.L. Dote, D. Kivelson, and R.N. Schwartz, A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids, J. Phys. Chem. 85:2169 (1981).

    Article  CAS  Google Scholar 

  16. M. Le Meste, G. Cornily, and D. Simatos, Temperature-induced phase change in a fat. A study by Electron Spin Resonance, Lipids 20:5, 296 (1985).

    Article  Google Scholar 

  17. M.M. Cohen and D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys. 31:1164 (1959).

    Article  CAS  Google Scholar 

  18. J. Perez, Frottement intérieur et module dynamique associés à la transition vitreuse des polyméres amorphes. Rev. Phys. Appl. 2:93 (1986).

    Article  Google Scholar 

  19. J.S. Vrentas and J.L. Duda, Molecular diffusion in polymer solutions, AICHE J. 25:1 (1979).

    Article  CAS  Google Scholar 

  20. J.S. Vrentas, J.L. Duda, and M.K. Lau, Solvent diffusion in molten polyethylene, J. Appl. Poly. Sci. 27:3987 (1982).

    Article  CAS  Google Scholar 

  21. J. Perez, Defect diffusion model for volume and enthalpy recovery in amorphous polymers. Polymer 29:483 (1988).

    Article  CAS  Google Scholar 

  22. J. Perez, J.Y. Cavaille, S. Etienne, and C. Jourdan, Physical interpretation of the rheological behaviour of amorphous polymers through the glass transition, Rev. Phys. Appl. 125 (1988).

    Google Scholar 

  23. W. Miller, Spin labeled synthetic polymers. in: “Spin Labeling II. Theory and Applications,” L.J. Berliner, ed., Academic Press, New York (1979).

    Google Scholar 

  24. T. Hori, I. Fujita, and T. Skimizu, Diffusion of disperse dyes into Nylon 6 above and below the glass transition temperature, J. Soc. Dyers Colour. 102:181 (1986).

    Article  CAS  Google Scholar 

  25. J. Coutandin, D. Ehlich, and M. Sillescu, Diffusion of dye molecules in polymers above and below the glass transition temperature studied by the Holographic Grating Technique, Macromolecules 18:587 (1985).

    Article  CAS  Google Scholar 

  26. J.S. Vrentas, J.L. Duda, and H.C. Ling, Influence of the glass transition on solvent self-diffusion in amorphous polymers, J. Polym. Sci. 26:1059 (1988).

    CAS  Google Scholar 

  27. J.A. Lee, T.S. Frick, W.J. Huang, T.P. Lodge, and M. Tirell, Probe diffusion in polymer solutions near Tg by forced Rayleigh scattering, Polvm. Prepr. 28:369 (1987).

    CAS  Google Scholar 

  28. P. Tormäla, and J. Tulikowa, Effect of end-groups on the motion of free nitroxyl radicals in poly(ethyleneglycol), Polymer 15:248 (1974).

    Article  Google Scholar 

  29. D. Simatos and M. Karel, Characterization of the condition of water in foods: Physico-chemical aspects, in: “Food Preservation by Moisture Control,” CC. Seow, ed., Elsevier Appl. Sci., Belfast (1988).

    Google Scholar 

  30. M.L. Williams, R.F. Landel, and J.D. Ferry, Temperature dependence of relaxation mechanisms in amorphous polymers and other glassforming liquids, J. Am. Chem. Soc. 77:3701 (1955).

    Article  CAS  Google Scholar 

  31. J. Jäckie, Models of glass transition. Rep. Prog. Phvs. 49:171 (1986).

    Article  Google Scholar 

  32. A.T. Bullock, G.G. Cameron, and P.M. Smith, Electron spin resonance studies of spin labeled polymers VIII. Relaxation processes in low density polyethylene, Eur. Polym. J. 11:617 (1975).

    Article  CAS  Google Scholar 

  33. A. Voilley and M. Le Meste, Aroma diffusion: the influence of water activity and of molecular weight of other solutes, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Nato ASI Series, M. Nijhoff, Dordrecht (1985).

    Google Scholar 

  34. D. Ringe, J. Kuriyan, A. Petsko, M. Karplus, M. Frauenfelder, R. Tilton, and I.O. Kuntz, The temperature dependence of protein structure and mobility, Trans. Am. Crystal Assoc. 20:109 (1985).

    Google Scholar 

  35. M. Frauenfelder, Proteins and glasses, in: “Structure and Dynamics of Nucleic Acids, Proteins, and Membranes,” E. Clementi and S. Chin, eds., Plenum, New York (1986).

    Google Scholar 

  36. M. Frauenfelder, F. Porak, and R.D. Young, Conformational substates in proteins, Ann. Rev. Biophys. Chem. 17:541 (1988).

    Article  Google Scholar 

  37. G. G. Cameron, I.S. Miles, and T. Bullock, Distribution in correlation times for rotational diffusion of spin probes in polymers, Brit. J. Polymer 19:129 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Le Meste, M., Voilley, A., Colas, B. (1991). Influence of Water on the Mobility of Small Molecules Dispersed in a Polymeric System. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics