Skip to main content

A Comparison of the Properties of Vicinal Water in Silica, Clays, Wood, Cellulose, and Other Polymeric Materials

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

The properties of water are known to be significantly modified by propinquity to solid surfaces. This author has previously measured some thermo-dynamic properties of water in silica gel pores and offered a statistical thermodynamic model for vicinal water that is apparently able to account successfully for the observed properties of water in silica pores. This model suggests that hydrogen bonding between water molecules is enhanced by propinquity to solid surfaces. The experimental work suggests that the structural modification extends at least to distances approaching 5 nm from the surface. In addition to the work of the present author, Low has conducted an extensive study of the thermodynamic properties of water in clays. Low’s results are remarkably similar to those of the present author, suggesting that the “state” of vicinal water in both systems is similar. In this paper, the properties of water adjacent to several surfaces are compared. The properties of water near cellulosic surfaces, including wood, are compared to those in silica. It appears that the properties of vicinal water adjacent to dissimilar surfaces are nearly identical to those in silica gel. Significantly, it appears that the notion of “structure breaking” surfaces suggested earlier by Goring and the notion of dense water near surfaces discussed, for instance, by Stamm are, in fact, inconsistent with the available thermodynamic data, despite their rather frequent mention in the wood and paper literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Jacobsen, Hydration structures of deoxyribonucleic acid and its physiochemical properties. Nature (London) 172:666 (1953).

    Article  Google Scholar 

  2. B. Jacobsen, The hydration structures of macromolecules, Sven. Kern. Tidskr. 67:1 (1955).

    Google Scholar 

  3. A. Szent-Gyorgyi, “Bioenergetics,” Academic Press, New York (1957).

    Google Scholar 

  4. W.B. Hardy, Tension of composite fluid surfaces and the mechanical stability of films of fluid, Proc. Roy. Soc. London Ser. A. 86:610 (1912).

    Article  Google Scholar 

  5. J.C. Henniker, Depth of the surface zone of a liquid, Rev. Mod. Phys. 21:322 (1949).

    Article  CAS  Google Scholar 

  6. W. Drost-Hansen, Structure of water near solid interfaces. Ind. Eng. Chem. 61:10 (1969).

    Article  CAS  Google Scholar 

  7. W. Drost-Hansen, The structure and properties of water at biological interfaces, in: “Chemistry of the Cell Interface, Part B,” H.D. Brown, ed., Academic Press, New York (1971).

    Google Scholar 

  8. W. Drost-Hansen, The occurrence and extent of vicinal water, in: “Biophysics of Water,” F. Franks, ed., Wiley, New York (1982).

    Google Scholar 

  9. F.M. Etzler and W. Drost-Hansen, A role for water in biological rate processes, in: “Cell Associated Water,” W. Drost-Hansen and J.S. Clegg, eds., Academic Press, New York (1979).

    Google Scholar 

  10. F.M. Etzler and W. Drost-Hansen, Recent thermodynamic data on vicinal water and a model for their interpretation, Croat. Chem. Acta. 56:563 (1983).

    CAS  Google Scholar 

  11. J.D. Oster and P.F. Low, Heat capacities of clay and clay water systems, Soil Sci. Amer. Proc. 28:605 (1964).

    Article  Google Scholar 

  12. J.L. Oliphant and P.F. Low, The isothermal compressibility of water-mixed, Na saturated montmorillonite, J. Colloid Interface Sci. 95:45 (1983).

    Article  CAS  Google Scholar 

  13. P.F. Low, Nature and properties of water in montmorillonite-water systems, Soil Sci. Soc. Amer. J. 43:651 (1979).

    Article  CAS  Google Scholar 

  14. B.E. Viani, P.F. Low and C.B. Roth, Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite, J. Colloid Interface Sci. 96:229 (1983).

    Article  CAS  Google Scholar 

  15. P.F. Low, Viscosity of interlayer water in montmorillonite, Soil Sci. Soc. Am. J. 40:505 (1976).

    Article  Google Scholar 

  16. P.F. Low, Relation between viscosity and other properties of water in montmorillonite, in: “Proc. Symp. on Water in Heavy Soils,” Vol. 1, M. Kutilek and J. Sutor, eds., Bratislava (1976).

    Google Scholar 

  17. G. Peschel and K.H. Adlfinger, Temperaturabhangigkeit der viskositatsehr dunner wasserschichten zwischen, Naturweissenschaften 56:558 (1969).

    Article  CAS  Google Scholar 

  18. G. Peschel and K.H. Adlfinger, Thermodynamic investigations of thin liquid layers between solid surfaces. II: Water between entirely hydroxylated fused silica surfaces, Z. Naturforsch. A 26:707 (1971).

    Google Scholar 

  19. G. Peschel and K.H. Adlfinger, Viscosity anomalies in liquid surface zones. IV: The apparent viscosity of water in thin layers adjacent to hydroxylated fused silica surfaces, J. Colloid Interface Sci. 34:505 (1972).

    Article  Google Scholar 

  20. G. Peschel, P. Beloucheck, M.M. Muller, M.R. Muller, and R. Koing, The interaction of solid surfaces in aqueous systems, Colloid Polymer Sci. 260:444 (1982).

    Article  CAS  Google Scholar 

  21. F.M. Etzler and D.M. Fagundus, The density of water and some other solvents in narrow pores, J. Colloid Interface Sci. 93:585 (1983).

    Article  CAS  Google Scholar 

  22. F.M. Etzler and D.M. Fagundus, The extent of vicinal water: implications from the density of water in silica pores, J. Colloid Interface Sci. 115:513 (1987).

    Article  CAS  Google Scholar 

  23. C.V. Braun, Calorimetric and dialotometric studies of structural properties and relaxation of vicinal water, M.S. Thesis, University of Miami (1981).

    Google Scholar 

  24. C.V. Braun and W. Drost-Hansen, A DSC study of the heat capacity of vicinal water, in: “Colloid and Interface Science,” Vol. III, M. Kerker, ed., Academic Press, New York (1976).

    Google Scholar 

  25. J.J. Cianci, Thermal anomalies in vicinal water as studied by DSC, M.S. Thesis, University of Miami (1981).

    Google Scholar 

  26. F.M. Etzler and P.J. White, The heat capacity of water in silica pores, J. Colloid Interface Sci. 120:94 (1987).

    Article  CAS  Google Scholar 

  27. F.M. Etzler, Enhancement of hydrogen bonding in vicinal water: heat capacity of water and deuterium oxide in silica pores, Langmuir 4:878 (1988).

    Article  CAS  Google Scholar 

  28. F.M. Etzler, A statistical thermodynamic model for water near solid surfaces, J. Colloid Interface Sci. 92:43 (1983).

    Article  CAS  Google Scholar 

  29. H.E. Stanley and J. Teixeira, Interpretation of the unusual behavior of H2O and D2O at low temperatures: tests of a percolation model, J. Chem. Phvs. 73:3404 (1980).

    Article  CAS  Google Scholar 

  30. G.C. Stey, The distribution of single particle parameters: implications for the structure of water, Ph.D. Thesis, University of Pittsburgh (1967).

    Google Scholar 

  31. P.M. Wiggins, Ionic partition between surface and bulk water in a silica gel, Biophvs. J. 13:385 (1973).

    Article  CAS  Google Scholar 

  32. P.M. Wiggins, Thermal anomalies in ion distribution in rat kidney slices, Clin. Exp. Pharmacol. Physiol. 2:171 (1975).

    Article  CAS  Google Scholar 

  33. R.M. Hurtado and W. Drost-Hansen, Ionic selectivity of vicinal water in the pores of a silica gel, in: “Cell Associated Water,” W. Drost-Hansen and J.S. Clegg, eds., Academic Press, New York (1979).

    Google Scholar 

  34. F.M. Etzler and T.L. Liles, Ion selectivity by solvents in narrow pores: physical and biophysical significance, Langmuir 2:797 (1986).

    Article  CAS  Google Scholar 

  35. R.L. Blumberg and H.E. Stanley, Connectivity of hydrogen bonds in liquid water, J. Chem. Phvs. 80:5230 (1984).

    Article  CAS  Google Scholar 

  36. H.C. HeIgeson and D.H. Kirkham, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures I: Thermodynamic/electrostatic properties of the solvent, Am. J. Sci. 274:1089 (1974).

    Article  Google Scholar 

  37. M. Oguni and C.A. Angell, Heat capacities of H2O/H2O2 and H2O/N2H4 binary solutions: isolation of a single component for Cp of supercooled water, J. Chem. Phvs. 73:1949 (1980).

    Article  Google Scholar 

  38. M.P. Bazzez, J. Lee, and G.W. Robinson, Is water really anomalous?, J. Phvs. Chem. 91:5818 (1987).

    Article  Google Scholar 

  39. D.F. Caulfield, Interactions at the cellulose-water interface, in: “Paper Science and Technology: The Cutting Edge,” Institute of Paper Chemistry, Appleton, Wisconsin (1980).

    Google Scholar 

  40. S.H. Zeronian, Intercrystalline swelling of cellulose,.in: “Cellulose Chemistry and its Applications,” T.P. Nevell and S.H. Zeronian, eds., Ellis Horwood, Chichester, England (1985).

    Google Scholar 

  41. D.A.I. Goring, The effect of cellulose on the structure of water, in: “Proc. TAPPI Annual Meeting,” TAPPI, Atlanta, Georgia (1978).

    Google Scholar 

  42. J.L. Neal and D.A.I. Goring, Interaction of cellulose with liquid water: accessibility determined from thermal expansion, J. Polymer Sci. C 28:103 (1969).

    Article  Google Scholar 

  43. J.L. Neal and D.A.I. Goring, Volume-temperature relationships of hydrophobic and hydrophilic non-electrolytes in water, J. Phys. Chem. 74:658 (1970).

    Article  CAS  Google Scholar 

  44. D.A.I. Goring, The structure of water in relation to the properties of wood constituents, Pulp Paper Mag. 67:T519 (1966).

    Google Scholar 

  45. M. Wahaba and K. Azziz, Moisture relations of cellulose VI: The specific volume of cellulose and its transition temperature, J. Textile Inst. Trans. 53:T291 (1962).

    Article  Google Scholar 

  46. B.V. Derjaguin, V.V. Karsev, and E.N. Khromova, Thermal expansion of ordinary and heavy water in the pores of titanium dioxide, J. Colloid Interface Sci. 78:274 (1980).

    Article  CAS  Google Scholar 

  47. V.V. Karsev, B.V. Derjaguin, and E.N. Efremova, Thermal expansion of water in finely porous bodies, Kolloidn. Zhurnal 24:471 (1962).

    Google Scholar 

  48. D.M. Clementz and P.F. Low, Thermal expansion of interlayer water in clay systems I. Effect of water content, in: “Colloid and Interface Science,” Vol. III, M. Kerker, ed., Academic Press, New York (1976).

    Google Scholar 

  49. W.D. Machin and J.T. Stuckless, Capillary-condensed water in silica gel, J. Chem. Soc, Faraday Trans I 81:597 (1985).

    Article  CAS  Google Scholar 

  50. W.D. Machin, personal communication.

    Google Scholar 

  51. R.J. Speedy, Stability-limit conjecture: an interpretation of the properties of water, J. Phys. Chem. 86:982 (1982).

    Article  CAS  Google Scholar 

  52. M. Wahaba, Moisture relations of cellulose to heats of wetting of partially saturated viscose rayon and standard cellulose in water. J. Phvs. Coll. Chem. 54:1149 (1950).

    Google Scholar 

  53. M.F. Froix and R. Nelson, The interaction of water with cellulose from nuclear magnetic resonance relaxation times, Macromolecules 8:726 (1975).

    Article  CAS  Google Scholar 

  54. M. Wahaba and S. Nashed, Change with temperature of the heat of wetting of dry cellulose in water and its bearing on the specific heat of the adsorbed water and of the swollen cellulose, Nature 166:998 (1950).

    Article  Google Scholar 

  55. C. Skaar, “Water in Wood,” Syracuse University Press, Syracuse, New York (1972).

    Google Scholar 

  56. A.J. Stamm, “Wood and Cellulose Science,” Ronald Press, New York (1964).

    Google Scholar 

  57. K.E. Kelsey and L.N. Clarke, Effect of temperature and initial moisture content on the heat of wetting of wood, Nature 176:83 (1955).

    Article  Google Scholar 

  58. R.F.S. Hearmon and J.N. Burcham, Specific heat and heat of wetting of wood. Nature 176:978 (1955).

    Article  Google Scholar 

  59. R. Keylwerth, Investigations on the free and restraint swelling of wood — part IV: investigations on the course of swelling and the dependence of wood density on moisture. Holz als Roh und Werkstuff 22:255 (1964).

    Article  Google Scholar 

  60. R. Keylwerth, Investigations on free and restraint swelling of wood — part I: free swelling. Holz als Roh und Werkstuff 20:252 (1962).

    Article  Google Scholar 

  61. R.C. Weatherwax and H. Tarkow, Density of wood substance: importance of penetration and adsorption compression of the displacement fluid, Forest Prod. J. 18:44 (1968).

    Google Scholar 

  62. E. Filby and O. Maass, The volume relations of the system cellulose and water, Can. J. Res. 7:162 (1932).

    Article  CAS  Google Scholar 

  63. W.F. Hampton and J.H. Mennie, Heat capacity measurements on gelatin gels II, Can. J. Res. 10:452 (1934).

    Article  CAS  Google Scholar 

  64. M.E. Freeman, Heat capacity and bound water in starch suspensions, Arch. Biochem. 1:27 (1942).

    CAS  Google Scholar 

  65. F. Stitt and E.K. Kennedy, Specific heats of dehydrated vegetables and egg powder, Food Res. 10:426 (1945).

    Article  CAS  Google Scholar 

  66. D.A. Kinard and C.A. Hoeve, Heat capacity of water adsorbed in methylcellulose, J. Polym. Sci. Polym. Symp. 71:183 (1984).

    Article  CAS  Google Scholar 

  67. A. Nolasco, E. Julien, and J. Besombes-Vailhe, Partial molar heat capacity of adsorbed water on an ion-exchanger, Thermochim. Acta. 92:341 (1985).

    Article  CAS  Google Scholar 

  68. J. Bernhardt and H. Pauly, Partial specific volumes in highly concentrated protein solutions, J. Phys. Chem. 79:584 (1975).

    Article  CAS  Google Scholar 

  69. S.G. Ash and G.H. Findenegg, Boundary layers of pure liquids at the graphon surface, Special Disc. Far. Soc. 1:105 (1970).

    Article  CAS  Google Scholar 

  70. W. Drost-Hansen, C.V. Braun, R. Hochstim, and G.W. Crowether, High precision dilatometry on aqueous suspensions: volume contraction on settling, in: “Particulate and Multiphase Processes, Vol 3: Colloidal and Interfacial Phenomena,” T. Ariman and N.T. Veziroglu, eds., Hemisphere, New York (1987).

    Google Scholar 

  71. F.M. Etzler and J.J. Conners, Temperature dependence of the heat capacity of water in small pores, Langmuir 6:1250 (1990).

    Article  CAS  Google Scholar 

  72. R.A. Wynne, The distribution of single particle parameters: implications for the structure of liquids, M.S. Thesis, East Carolina University (1989).

    Google Scholar 

  73. F.M. Etzler, R.A. Halcomb, and R. Ross, A statistical geometric approach for understanding the structure of liquid water, Physica A. in press (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Etzler, F.M. (1991). A Comparison of the Properties of Vicinal Water in Silica, Clays, Wood, Cellulose, and Other Polymeric Materials. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics